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Genomics-based prediction of hybrid performance promises to boost selection gain.

The main goal of our study was to investigate the relevance of additive, dominance, and

epistatic effects for determining hybrid seed yield in a biparental rapeseed population.

We re-analyzed 60,000 SNP array and seed yield data points from an immortalized F2
population comprised of 318 hybrids and 180 parental lines by performing genome-wide

QTL mapping and predictions in combination with five-fold cross-validation. Moreover,

an additional set of 37 hybrids were genotyped and phenotyped in an independent

environment. The decomposition of the phenotypic variance components and the

cross-validated results of the QTL mapping and genome-wide predictions revealed that

the hybrid performance in rapeseed was driven by a mix of additive, dominance, and

epistatic effects. Interestingly, the genome-wide prediction accuracy in the additional

37 hybrids remained high when modeling exclusively additive effects but was severely

reduced when dominance or epistatic effects were also included. This loss in

accuracy was most likely caused by more pronounced interactions of environments

with dominance and epistatic effects than with additive effects. Consequently, the

development of robust hybrid prediction models, including dominance and epistatic

effects, required much deeper phenotyping in multi-environmental trials.

Keywords: hybrid performance, genome-wide prediction, dominance effects, epistasis, rapeseed

INTRODUCTION

Hybrid breeding is a promising approach to boost selection gain in crop improvement (Duvick,
2001; Kempe and Gils, 2011; Zhang et al., 2016). The establishment of hybrid breeding programs
for rapeseed (Brassica napus, 2n = 38, AACC) resulted in an up to 30% increase in seed yield
compared with open-pollinated cultivars (Brandt et al., 2007). Hybrid breeding in rapeseed profited
strongly from the exploration of different hybrid seed production systems, such as the Polima
cytoplasmic male sterility (CMS) (Fu et al., 1995), Ogura CMS (Brown et al., 2003), genic male
sterility (Yan et al., 2016), and ecotype male sterility (Yu et al., 2015). As a consequence, hybrids
replaced open-pollinated cultivars in most rapeseed growing regions (Fu, 2000).

One major challenge in hybrid breeding has been to identify superior single-crosses out of
millions of potential hybrids (Bernardo, 1994). Genome-wide prediction is a powerful tool to
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solve this problem, even for quantitative traits (Zhao et al.,
2015b). In genome-wide prediction, many markers are used,
and their effects are estimated in populations that have been
genotyped and phenotyped. The estimated marker effects are
then applied to predict the performance of non-phenotyped
hybrids based on their molecular marker profiles.

The potential of genome-wide prediction was investigated
in rapeseed with a focus on general combining ability (GCA)
effects as the additive component of the hybrid performance
(Jan et al., 2016). The study was based on two testcross series of
475 spring-type lines and revealed moderate-to-high prediction
accuracies for a number of important agronomic traits. The
potential of genome-wide prediction of hybrid performance,
i.e., additive/general and non-additive/specific combining ability
(SCA) effects, has not been examined in rapeseed. Simulation
studies revealed that the prediction accuracy of the hybrid
performance can be increased by modeling dominance as one
type of non-additive effect, but the magnitude of improvement
strongly depended on the relevance of the variance of specific
vs. combining ability effects (Technow et al., 2012). Analyses of
experimental data in maize (Bernardo, 1994), rice (Wang et al.,
2017), wheat (Zhao et al., 2015a), triticale (Gowda et al., 2013),
and sunflower (Reif et al., 2013) corroborated this finding, with
hybrid prediction accuracies being either similar or higher when
fitting additive and dominance effects.

Genome-wide prediction approaches of the hybrid
performance can also accommodate epistasis, i.e., interaction
effects between genes (Xu et al., 2014). In particular,
semiparametric reproducing kernel Hilbert space (RKHS)
regression models or extended genomic best linear unbiased
predictions (EG-BLUP) are computational efficient approaches
to capture epistasis in genome-wide predictions (Jiang and
Reif, 2015). Experimental studies in rice (Xu et al., 2014),
wheat (Zhao et al., 2015a), and apple (Kumar et al., 2015) have
shown no or only marginal improved prediction accuracies
through modeling additive, dominance, and epistatic effects.
This outcome contrasted with the results of genome-wide
prediction studies focused on wheat inbred lines that reported
an increase in accuracy when fitting data based on effects besides
additive and epistatic effects (He et al., 2016a,b). Furthermore,
several attempts have been made to dissect the genetic basis
of heterosis for important agronomic traits in rapeseed using
biparental populations (Radoev et al., 2008; Basunanda et al.,
2010; Shi et al., 2011; Bu et al., 2015; Wen et al., 2015). All
previous studies reported that dominance and epistatic effects
contributed to heterosis. Thus, it was tempting to hypothesize
that genome-wide prediction of hybrid performance in rapeseed
was profiting from modeling additive, dominance, and epistatic
effects.

In our study, we re-analyzed published rapeseed data, which
were previously used to determine the genetic basis of heterosis
(Shi et al., 2011). The data comprised phenotypic records for
seed yield generated for the biparental TNDH doubled haploid
population and the corresponding derived immortalized F2
population (TNRC-F2) (Shi et al., 2011). Moreover, the parental
lines have been fingerprinted with a 60,000 SNP array (Zhang
et al., 2016), and an additional 37 new RC-F2 crosses were

genotyped and phenotyped in this study. The objectives of our
study were to investigate the relevance of additive, dominance,
and epistatic effects for determining hybrid seed yield using
genome-wide association mapping and to examine the potential
to increase the accuracy of hybrid prediction when considering
additive, dominance, and epistatic effects.

MATERIALS AND METHODS

Plant Materials and Field Trials
In our previous study, a doubled haploid population of 202
lines (TNDH) was developed by microspore culture from the F1
cross between Tapidor (European winter-type rapeseed cultivar)
and Ningyou7 (Chinese semi-winter type rapeseed cultivar;
Qiu et al., 2006). The 202 DH lines were used to generate
an immortalized F2 hybrid population (TNRC-F2) with 404
single crosses. Each DH line served as a parent for single-cross
hybrids (Shi et al., 2011). The lines of TNDH and hybrids
of TNRC-F2 were evaluated with Tapidor and Ningyou7 at
three different environments, i.e., year-location combinations, in
China (Supplementary Table 1). Details of the field evaluation
were published elsewhere (Shi et al., 2011). Briefly, the plot size
was 3.0 m2 with a distance of 40 cm between rows and 25 cm
between individuals. The average dry weight of the seeds was
determined as Mg ha−1.

Furthermore, 37 genotypes were sampled as an independent
validation population. The validation population included 37
single-cross hybrids not considered in the TNRC-F2 population
and were derived from the crosses among two lines of the 180
DH lines and 18 new DH lines derived from the TN (Tapidor
× Ningyou7) F1 cross. The validation population was grown in
one environment (2015–2016) in Wuhan in a trial with three
replicates. Every plot comprised three rows with a total plot size
of 1.8 m2. The average dry weight of the seeds was determined as
Mg ha−1.

Genomic Data
We genotyped 180 out of the 202 DH lines, as well as the two
parents, Tapidor and Ningyou7, using a 60,000 SNP array (Zhang
et al., 2016). After quality control, 13,753 SNPmarkers remained,
which were polymorphic, with missing values <5% and a minor
allele frequency (MAF) >5%. We further removed SNPs in a
perfect linkage disequilibrium that resulted in 1,527 unique SNPs
(Zou et al., 2016). The genotypes of the 318 TNRC-F2 hybrids
(Supplementary Figure 1) were inferred based on the genotypes
of their respective parents. For the independent validation
population with 37 new single crosses, we also genotyped the 18
new parental lines using the same SNP array and SNP marker
filter parameters to get the genotypes of the 37 crosses based on
the genotypes of the parents.

Phenotypic Data Analyses
All quantitative genetic parameters were estimated based on the
performance of 318 hybrids and the 180DHparents. After outlier
tests (Anscombe and Tukey, 1963), the adjusted means of the
genotypes within each environment were estimated based on the
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following mixed model:

yin = µ + gi + εin,

where yin was the seed dry weight of the nth observation for the
ith genotype, µ was the mean value, gi was the genetic value of
the ith genotype, and εin was the corresponding residual. The
mean value and genetic value were modeled as fixed effects, and
the residual was treated as a random effect.

The adjusted means of seed dry weight for each genotype
across environments were estimated with the following model:

yik = µ + gi + lk + εik,

where yik was the adjusted mean of the ith genotype in the kth
environment, µ was the overall mean, gi was the genetic value
of the ith genotype, lk was the effect of the kth environment
confounded with replicate effects, and εik was the residual.
The mean and genetic values were modeled as fixed effects,
environment effects, and residuals were treated as random effects.

In addition, we estimated the genetic variance components of
hybrids and parental lines, as well as the variance of genotype ×
environment interactions using a one-step model:

yijkn = µ + a+ pij + (pl)ijk +mi + fj + sij + (ml)ik + (fl)jk +

(sl)ijk + lk + eijkn,

where yijkn was the phenotypic performance of the nth
observation for the ijth entry (line i= j, or hybrid i 6= j) in the kth
environment, µ was the overall mean, a was the group effect for
lines and hybrids, pij was the genetic effect of the parental lines,
(pl)ijk was the interaction effect of the ijth parental line with the
kth environment, mi was the GCA effect of the ith male line, fj
was the GCA effect of the jth female line, sij was the SCA effect
of crosses between lines i and j, (ml)ik and (fl)jk were GCA ×

environment effects of female and male lines, and (sl)ijk was SCA
× environment interaction effects, lk was the effect of the kth
environment, and eijkn was the residual. All effects were treated
as random effects, except for the mean value and group effects.

The broad-sense heritability was calculated as the ratio of
genotypic to phenotypic variance:

H2 =
σ 2
G

σ 2
G +

σ 2
G×E
NE

+
σ 2
E

NE
∗NR

,

where NE referred to the number of environments, NR was
the average number of replications per environment, σ 2

G was
the genotypic variance, σ 2

G×E was the variance of genotype

multiplied by environment interaction, and σ 2
E referred to the

error variance.

Genome-Wide QTL Mapping
Design matrices for additive and dominance effects were
specified for the hybrids and their parental lines according
to the F∞ metric (Falconer and Mackay, 1996). Data from
each environment were used in QTL mapping. To correct for
potential population stratification, the one minus the Rogers’

distance matrix was used as a kinship matrix in the genome-wide
QTL mapping scan (Zhao et al., 2013). Genome-wide scans for
marker-trait associations were conducted to detect main-effect
QTL, as well as all first-order epistasis effect QTL.

For main effect QTL, the model was defined as the following
Yu et al. (2006):

Y = Xβ + Ss+ Zu+ e.

Y stands for the adjusted entry means of the 498 genotypes, i.e.,
180 DH lines and 318 TNRC-F2 hybrids, of each environment, β
was a vector of environment effects, s was a vector of SNP effects,
u was a vector of polygene background effects, and e was a vector
of residual effects. X, S, and Z were incidence matrices relating
Y to β , s, and u. β and s were treated as fixed effects, while u
and e were treated as random effects. A Quantile-Quantile plot
was used to test for proper control of population stratification
(Yu et al., 2006). The Bonferroni–Holm procedure (Holm, 1979)
was applied to correct for multiple tests at a significance level of
P < 0.1.

We performed a full two-dimensional scan to detect epistatic
QTL using the following model:

Y = Xβ + ZA1a1 + ZA2a2 + ZD1d1 + ZD2d2 + ZAAi11

+ZA1D2i12 + ZA2D1i21 + ZDDi22 + Zu+ e,

where a1, a2, d1, and d2, are additive and dominance
effects of the two loci and i11, i12, i21, and i22
correspond to all four different epistatic interaction effects.
ZA1,ZA2,ZD1,ZD2,ZAA,ZA1D2,ZA2D1, and ZDD were incidence
matrices for the effects defined above. In this model, all effects
were treated as fixed effects except for u and e, which were treated
as random effects. The epistasis model was implemented using
the efficient mixed-model association (EMMA) approach, which
significantly reduced the computation time (Kang et al., 2008).
A permutation analysis with 1,000 repetitions was employed to
correct for multiple testing of epistatic effects at a significance
level P < 0.05 (Churchill and Doerge, 1994). The proportion of
the phenotypic variance explained by single QTL was estimated
using multiple regression with QTL ordered according to their P-
values (Utz et al., 2000). The proportion of explained genotypic
variance was determined as a proportion of explained phenotypic
variance standardized by broad-sense heritability.

We applied five-fold cross validation to evaluate the accuracy
to predict the genotypic values from the marker effects. The data
set was randomly divided into an estimation set (100% of inbred
lines and 80% of the hybrids) and a test set (20% of the remaining
hybrids). QTL detection and estimation of marker effects were
performed in the estimation set. The estimated marker effects
were then used to predict the performance of the genotypes in
the test set. The prediction accuracy was estimated as a Pearson
correlation coefficient between predicted and observed values
standardized with the square root of the heritability.

Genome-Wide Prediction
Based on the adjusted entry means of the 498 genotypes, we
applied genomic best linear unbiased prediction (Vanraden,
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2008; Zhao et al., 2015a) that considered additive, dominance,
and epistatic effects (Zhao et al., 2015a). The model including
only additive effects was:

y = 1nµ + ga + e.

The model including additive and dominance effects was:

y = 1nµ + ga + gd + e.

Y were the adjusted entry means of the 498 genotypes across
the three environments, 1n was a vector of ones and n was the
number of genotypes, µ referred to the overall mean across all
three environments, and ga and gd represented the additive and
dominance effects, respectively. In the model, µ was a fixed
effect, and the remaining effects were all random effects following
normal distributions ga ∼ N(0,Gaσ

2
a ), gd ∼ N(0,Gdσ

2
d
), and

e ∼ N(0, Iσ 2
e ), where Ga and Gd, were the relationship matrices

corresponding to additive and dominance genetic effects, and
σ 2
a , σ

2
d
, and σ 2

e were the variance of additive effects, dominance
effects, and the residuals. Details on the implementation of these
relationship matrices can be found in Zhao et al. (2015a). We
used a shrinkage method to calculate the relationship matrices
(Ledoit and Wolf, 2004; Endelman and Jannink, 2012). All of the
above GBLUP models were implemented using the R package
BGLR (Perez and Campos, 2014). In addition, we employed a G-
BLUP approach using a Gaussian kernel to evaluate the relevance
of epistasis for prediction accuracies. The Gaussian kernel
method has the benefit of considering all higher-order epistatic
interact effects. The G-BLUP model using the Gaussian kernel
was implemented by using the R package rrBLUP (Endelman,
2011). The prediction accuracies were evaluated using the cross-
validation scenarios outlined above. We also evaluated the
prediction accuracy for the independent validation set using the
same training set.

RESULTS

Phenotypic Data Analyses of Seed Yield
The Best Linear Unbiased Estimations of seed yield for the
single environments were significantly (P < 0.01) correlated,
with Pearson moment correlation coefficients ranging from
0.48 to 0.59 (Supplementary Figure 2). The analyses across
environments revealed genetic variance components, which were
significantly (P < 0.05) larger than zero (Table 1). The broad-
sense heritability estimates were 0.47 for the TNRC-F2 hybrid
population and 0.48 for the TNDH parental population. We
further decomposed the genetic variance for seed yield of the
TNRC-F2 hybrid population into variances due to general (σ

2
GCA)

and specific combining ability effects (σ2SCA). The σ
2
SCA was 1.4

times larger than σ
2
GCA, and the variance of interaction effects

between environments and SCA effects σ
2
Environment×SCA was 2.3

times larger than σ
2
Environment×GCA.

Substantial transgressive variation was observed when
comparing the seed yield of the TNDH parental population with
the performance of the two founder lines, Tapidor and Ningyou7
(Figure 1). The average seed yield of the 318 single-cross hybrids

TABLE 1 | Estimates of variance components (σ2) and broad-sense

heritability of 318 hybrids and 180 parents evaluated for seed yield (Mg

ha−1) across three environments.

Source Hybrids Parents

σ2
Genotype 0.0267*** 0.0266***

σ2
GCA 0.0110* –

σ2
SCA 0.0156** –

σ2
Genotype×Environment 0.0805*** 0.0770***

σ2
Environment×GCAa 0.0243*** –

σ2
Environment×SCAb 0.0561*** –

σ2
Residual

0.0211 0.0211

Heritability 0.47 0.48

*, **, and *** means significantly different from zero at P < 0.1, P < 0.01, and P < 0.001,

respectively.
aGeneral combining ability effects.
bSpecific combining ability effects.

FIGURE 1 | Box-and-Whisker plots of the distribution of Best Linear

Unbiased Estimations (BLUEs) for seed yield of the 180 DH lines

(TNDH) and the 318 single-cross hybrids (TNRC-F2). The horizontal lines

refer to the performance of the founder parents: Tapidor and Ningyou7.

of the TNRC-F2 population was 2.09 Mg ha−1 and was 1.27
times larger than the average seed yield of the 180 lines of the
TNDH parental population.

Genome-Wide QTL Mapping
Genome-wide QTL mapping was performed in the combined
TNRC-F2 hybrid and TNDH parental population. The
Quantile-Quantile plots for the additive and dominance
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effects revealed that population stratification was properly
controlled with a model including the kinship matrix
(Supplementary Figure 3). In the genome-wide QTL
mapping scan, there were 2 SNPs located on chromosomes
A03 and A07, which significantly contributed to the
additive genetic variation for seed yield (Figure 2). The
SNP located on chromosome A03 explained 7% and the SNP
on chromosome A07 explained 4% of the total genotypic
variance (Supplementary Table 2). Moreover, 32 SNPs exhibited
significant dominance effects and were mainly located on
chromosomes A01, A02, A04, and C02. The SNPs with
significant dominance effects explained 44% of the genotypic
variance.

A full two-dimensional scan for epistatic effects was
performed, which revealed 18 significant additive by additive
effects, 129 significant additive by dominant effects, and
104 significant dominance by dominance effects (Figure 2).
The epistatic interactions mainly involved SNPs, which
were located on chromosome A03, A09, and C04. All 251
epistatic effects explained 31% of genetic total genetic variance
(Supplementary Table 3).

Five-fold cross-validation was performed for the genome-
wide QTL mapping study to obtain unbiased estimates of the
total genetic variation explained by additive, dominance, and
epistatic effects. The prediction accuracy was measured as a
Pearson moment correlation between predicted and observed

FIGURE 2 | Genetic architecture of hybrid performance in rapeseed. The red lines refer to the -log10 (P-values) of the additive effects, and the blue lines refer to

the -log10 (P-values) of the dominance effects. The brown dots mark the significant effects of P < 0.1 adjusted to apply the Bonferroni–Holm procedure (Holm, 1979).

Links in the center of the circle represent significant digenic interactions between SNP markers; red lines reflect additive-by-additive, blue lines additive-by-dominance,

and green lines dominance-by-dominance interactions.
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values of the test population standardized with the square root of
the broad-sense heritability. The prediction accuracy of additive
effects amounted to 0.18 and increased to 0.26 when modeling
additional dominance effects. Adding epistatic interaction effects
did not alter the prediction accuracy of the hybrid performance.

Genome-Wide Prediction of Seed Yield
Evaluated By Applying Cross Validations
The accuracies of three different genome-wide prediction models
were compared by applying five-fold cross validation (Figure 3).
We observed an increase in the prediction accuracy from the
model, which considered only additive effects (0.49) compared
with the model with additive plus dominance effects (0.65)
and with the highest accuracy of 0.72 observed when modeling
additive, dominance, and epistatic effects. To summarize, the
benefits were twice as much when including additionally
dominance effects compared with epistatic effects.

Genome-Wide Prediction of Seed Yield
Evaluated By Applying Independent
Validations
The accuracy of the prediction model developed based on
the TNDH and TNRC-F2 populations was further evaluated
in an independent validation. Therefore, an additional set of
37 RC-F2 single-cross hybrids were generated and evaluated
at an independent environment. The prediction accuracy was
assessed again by standardizing the Pearson moment correlation
between predicted and observed values by the square root of
the broad-sense heritability. The latter was estimated based on
the variance components observed for the TNRC-F2 population.
The prediction accuracy was high and amounted to 0.49 for

FIGURE 3 | Box-Whisker plots of whole-genome best linear unbiased

prediction (GBLUP) accuracies of seed yield evaluated with five-fold

cross validation. Additive (A), dominance (D), and epistatic effects (E) were

gradually included in the GBLUP models.

the genome-wide prediction approach while also considering
additive effects. Interestingly, the prediction accuracy dropped
severely when additionally dominance (0.15) or epistatic effects
(0.08) were included.

DISCUSSION

The immortalized TNRC-F2 population used in our study was
initially designed to determine the genetic basis of midparent
heterosis of hybrids between the European winter-type cultivar
Tapidor and the Chinese semi-winter type cultivar Ningyou7
(Shi et al., 2011). Immortalized F2 populations exhibited an
expected allele frequency of one-half, which maximized the
variance of dominance effects (Falconer and Mackay, 1996)
and enhanced the variance of epistatic effects (Mackay, 2014).
Because dominance and epistatic effects determine midparent
heterosis (Melchinger et al., 2008), its genetic basis can be studied
thoroughly in immortalized F2 populations. The variance of
additive effects is twice as high in doubled haploid populations
compared with hybrid populations (Falconer and Mackay,
1996). Thus, an integrated analysis of doubled haploid and
immortalized F2 populations represents a powerful approach for
studying the contribution of additive, dominance, and epistatic
effects to hybrid performance. This approach encouraged us to
implement a strategy that involved reanalyzing seed yield data of
the TNDH and TNRC-F2 populations (Shi et al., 2011) using the
newly available high-throughput 60,000 SNP array (Zhang et al.,
2016).

Hybrid Performance Is Substantially
Influenced By Dominance Effects
Distinguishing the variance of the hybrid performance into
σ
2
GCA and σ

2
SCA provides the first insights into the role of additive

and dominance effects. Assuming there is an absence of epistasis,
σ
2
GCA is determined for immortalized F2 populations through

additive effects and σ
2
SCA was controlled by dominance effects

(Lynch and Walsh, 1998). Thus, the predominance of σ
2
SCA was

1.4 times larger than σ
2
GCA (Table 1) and clearly points to the

relevance of dominance effects in the TNRC-F2 hybrid rapeseed
population. Our findings agreed with previous results on grain
yield reported for F2 populations in maize (Wolf et al., 2000)
and rice (Li et al., 2010) generated using the North Carolina
Design III (Comstock and Robinson, 1952). By contrast, studies
using factorial mating designs based on rapeseed (Brandle and
McVetty, 1989), maize (Parisseaux and Bernardo, 2004), wheat
(Zhao et al., 2015a), or barley diversity panels (Philipp et al., 2016)
observed that σ

2
GCA is the main component of the variance of

the hybrid performance. These discrepancies can be explained
by allele frequencies substantially deviating from one-half in
factorial crosses among diverse inbred lines, which severely
impacts the ratio of σ2GCA vs. σ2SCA (Falconer and Mackay, 1996).

The findings of the genome-wide QTL mapping study
(Supplementary Table 2) complement the picture of the
relevance of dominance effects at the molecular level. We
detected 16 times as many marker-trait associations that
contributed to the dominance more than to the additive
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variation (Figure 2). The findings were in line with earlier
studies reporting that dominance effects are key factors of
heterosis in rapeseed (Radoev et al., 2008; Basunanda et al., 2010;
Shi et al., 2011; Bu et al., 2015; Wen et al., 2015). Nevertheless, it
is important to note that these results were not cross-validated,
which was recommended to obtain an unbiased picture of the
contribution of genetic effects to phenotypic variation (Utz
et al., 2000). When we applied cross validation, the variance
explained by all main effect QTL decreased from 55 to 7%, but
the advantage for prediction accuracy when fitting data besides
the additive, as well as the dominance effects, remains substantial
(44%).

The small proportion of genetic variance explained by all
QTL indicates a complex genetic architecture of seed yield in
rapeseed, with the presence of many QTL each contributing only
a little to the phenotypic variation. Genome-wide predictions are
more suitable to tackle such complex traits (Riedelsheimer et al.,
2012). Similarly, we observed a 2.5 times higher accuracy for
the genome-wide predictions based on main effects (Figure 3)
compared with the approach using QTL only. Nevertheless,
the benefits of modeling the effects of the additive along with
the dominance effects was comparable (33%, Figure 3) to the
results observed for QTL mapping (44%). In summary, the
phenotypic data analyses, the QTL mapping, and the genome-
wide prediction study suggested that dominance effects were
substantially contributing to the phenotypic variation of seed
yield for the Tapidor× Ningyou7 rapeseed hybrid.

Genome-Wide Prediction Revealed a
Prominent Role of Epistasis Contributing
to the Hybrid Performance
According to previous results (Radoev et al., 2008; Basunanda
et al., 2010; Shi et al., 2011; Bu et al., 2015; Wen et al.,
2015), a large number of 251 significant digenic epistatic
effects were detected in the genome-wide QTL mapping study
(Supplementary Table 3). Around 31.5% (79) of the digenic
interaction were additive by dominance effects involving SNPs
on chromosome A03 and C04 (Supplementary Table 3). These
79 epistatic pairs trace back to eight clusters of markers,
five on chromosome A03, and three on chromosome C04.
Some of the SNPs of the eight clusters were also associated
with main effect QTL for flowering time, seed weight, seed
number, and oil content (Supplementary Table 3). Marker Bn-
scaff_16534_1-p2320270 located on C04 showed significant
dominance effects (Supplementary Table 2) and was together
with closely linked markers involved in 26 of the epistatic
interactions between chromosomes A03 and C04. Thus, Bn-
scaff165341-p2320270 is an interesting candidate for further fine
mapping studies.

Despite the large number of 251 significant digenic epistatic
effects, the cross-validated prediction accuracy did not increase
when modeling epistatic effects beyond main effects. This
can either point to the irrelevance of epistasis for seed yield
in rapeseed or can be explained by the challenge to detect
epistatic effects for the complex trait seed yield (Mackay, 2014).
The results of the genome-wide prediction study support the

latter explanation. The prediction accuracy increased by 11%
compared with the prediction approach based on additive
and dominance effects only (Figure 3). The observed increase
is much higher than that reported in previous studies on
genome-wide prediction of hybrid performance. Zhao et al.
(2015a) observed a 2% increase in prediction ability when
modeling epistatic effects in a large population of 1,604
wheat hybrids and their 135 parental inbred lines. The lower
benefit observed for wheat vs. rapeseed can be explained
by the more marginal allele frequencies in factorial mating
designs compared with immortalized F2 design. Surprisingly,
Xu et al. (2014) observed no benefits when modeling epistatic
effects in a large immortalized F2 population comprised of
240 rice inbred lines and 360 F2 genotypes. The discrepancy
between our findings and that of Xu et al. (2014) might
point to differences in the genetic architecture among crop
species, as has been observed for the genetic basis of
heterosis in the self-pollinating species rice vs. the outcrossing
species of maize (Garcia et al., 2008) and deserves further
research.

The total population was used to estimate the genetic
components of variance with a Bayesian generalized linear
regression based on the design matrices of additive, dominance,
and all types of digenic epistatic effects. We observed a
prominent role of the variance of dominance effects contributing
to 49% of the genetic variance (Supplementary Figure 4).
Additive (27%) and the sum of all digenic epistatic effects
(24%) contributed nearly equally to the genetic variance of
the hybrid performance. This suggests that the Tapidor ×

Ningyou7 rapeseed hybrid successfully exploits all types of
genetic effects. Whether our findings are also valid for further
rapeseed hybrids or not, deserve further research in other genetic
backgrounds.

Additive Effects Were Less Affected By
Environment Interactions than
Non-additive Effects
The phenotypic data analyses revealed that σ

2
GCA was less

affected by varying environmental conditions than σ
2
SCA

(Table 1). This result contrasted with previous findings based
on an F2 population derived from the B73 × Mo17 maize
hybrid (Wolf et al., 2000), which again points to differences
in the genetic architecture among crop species. Validating
the developed prediction model in an independent sample
of genotypes and environments revealed that the observation
at the phenotypic level was also reflected at the molecular
level. The prediction accuracy is stable for additive effects
(0.49) but collapsed when adding dominance (0.15) or epistatic
effects (0.08) (Figure 3). Thus, the development of robust
hybrid prediction models, including dominance and epistatic
effects, requires a much deeper phenotyping analysis in multi-
environmental trials. The flip side of our finding is that prediction
models focusing exclusively on additive effects yields already
stable and high prediction accuracies. Additive models can
be easier implemented simplifying the application of hybrid
prediction in plant breeding programs.
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CONCLUSIONS

Our study was based on a doubled haploid and immortalized
F2 population derived from the single-cross hybrid Tapidor
× Ningyou7, and the conclusions are restricted to this gene
space. The phenotypic data analyses, the QTL mapping, and the
genome-wide predictions revealed that hybrid performance is
driven by a mix of additive, dominance, and epistatic effects.
Prediction accuracies substantially profited when integrating
dominance and epistatic effects, which is most likely to
result from using a mapping population with expected allele
frequencies of one-half. Transferring the results to a broader
diversity involves the challenge that this entails to move to a
gene space with less balanced allele frequencies, which led to a
low power to exploit dominance and epistatic effects. Further
research is required to search for an optimum compromise
between the inference space of the results and precision to predict
additive as well as dominance and epistatic effects.
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