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Abstract Soil compaction causes substantial reduction in ag-
riculture productivity and has always been of great distress for
farmers. Intensive agriculture seems to be more crucial in
causing compaction. High mechanical load, less crop diversi-
fication, intensive grazing, and irrigation methods lead to soil
compaction. It is further exasperated when these factors are
accompanied with low organic matter, animal trampling, en-
gine vibrations, and tillage at high moisture contents. Soil
compaction increases soil bulk density and soil strength, while
decreases porosity, aggregate stability index, soil hydraulic
conductivity, and nutrient availability, thus reduces soil health.
Consequently, it lowers crop performance via stunted above-
ground growth coupled with reduced root growth. This paper
reviews the potential causes of compaction and its conse-
quences that have been published in last two decades.

Various morphological and physiological alterations in plant
as result of soil compaction have also been discussed in this
review.

Keywords Land degradation . Soil compaction . Soil health .

Soil harness . Tillage . Root growth . Stomatal conductance

Introduction

Bourgeoning population and economic development are con-
tinuing to put a great challenge and pressure on land use par-
ticularly in developing countries. In addition, worldwide in-
tensive agriculture has been preferably employed involving
shorter crop rotations, mono cropping system over seasons,
and heavy machinery use with a purpose to increase net profit
in short time (Poesse 1992). Intensive cultivation involves
heavy cultivation of crops and over exploitation of soil, could
bemore worsen when heavy tillage is employed tomanipulate
soil conditions. Tillage operation consisted of primary tillage
and secondary tillage, employed to increase the soil’s structur-
al macroporosity, while excessive tillage operations over these
freshly tilled soils cause soil compaction (Wang et al. 2004).
Raghavan et al. (1992) reported that soil compaction causes
reduction in soil porosity with concomitant increase in soil
bulk density. It is also coupled with decline in hydraulic con-
ductivity of soil and development of hard crust below the tilled
layer, smeared layer (Soane et al. 1981).

With time, research on farming systems deducted improved
tillage practices under conventional and conservation tillage
practices, to cope with the new pressures associated with inten-
sive agriculture, whichwould otherwise deteriorate soil structure
to an extent that crop yields might affect significantly. Tillage
operations are done by using heavy machines with high axle
load, wheel slip, and ground pressure thus impinges on soil
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physical properties (Arshad et al. 1999; Wang et al. 2004).
Conventional tillage relied on heavy soil opening and non-site
specific wheeling result in reduction of macropores led to soil
hardening under tilled layer. Furthermore, Botta et al. (2007)
examined the penetrating response of roots in soils with high
bulk density and referred compaction as a cause of reduction in
soil porosity. Alteration in pore size distribution led to unstable
consolidation of soil particles as a response of soil compaction
(Mapa et al. 1986). Formation of macropores in soil could be
affected by different interculture operations, cropping system,
and/or field trafficking. Nonetheless, conventional tillage also
results in the formation of high macropores, which could be
associated with excessive soil loosening. Furthermore,
Petelakau and Dannowski (1990) reviewed that frequent heavy
traffic disintegrated the structures of both top and subsoil espe-
cially on arable land. This was supported by Bottam et al.
(2004), who examined the effect of repeated traffic over same
track, resulted in subsoil compaction and significant yield reduc-
tion of soybean (Glycine max L.).

Effects of soil degradation particularly of soil compaction are
now well documented related with much detrimental and wider
impact asmerely on the growth and yield of the crop in question.
Nature and extent of this degradation can be embellished by the
lack of organic matter. It also affects soil organic carbon and
nitrogen mineralization, concentration of carbon dioxide in the
soil (Conlin and Driessche 2000), and volume of macropores in
the soil (Barnes et al. 1971; Taylor and Brar 1991) and hampers

root proliferation in soil, as affected by enlarged mechanical
resistance or poor aeration (Chan et al. 2006). The effects of soil
compaction on crops and soil properties are complex and well
documented (Batey 1990). This review shows causes of soil
compaction with concomitant effects on soil health and crop
performance. Current climate change also results in release of
greenhouse gas emissions by altering carbon sequestration or
nitrogen mineralization. We also attempt to discuss the current
knowledge about greenhouse gas emission in compacted soils.

Causes and linkages of soil compaction

Efforts have been made to quantify the effects of soil compac-
tion and to analyze spatial and temporal relationship between
extent of compaction and its causes. This section demonstrates
key components responsible for soil compaction (Fig. 1). Key
components such as mechanical load, soil physical properties,
agronomic operations, and crop rotation can influence soil
compaction (Hettiaratchi 1987; Hamza and Anderson 2005).

1. Mechanical load

Most agricultural operations required the use of heavy machin-
ery during tillage and interculture or fertilizer application
(Tullberg 1990). The continuous increases in the weight of farm
machinery and the necessity to use heavy machines have

Fig. 1 Summary of factors
inducing soil compaction
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increased the subsoil damage. Mechanically caused soil com-
paction is well accepted and documented, characterized by re-
duction of crop growth and deterioration in soil quality in many
parts of the world (Bennie and Krynauw 1985; Soane and Van
Ouwerkerk 1994; Smith et al. 1997). However, the vulnerability
of soil to become compacted has been observed as an interaction
of numerous factors, including soil physical properties, wheel-
ing, number of passing and farming practices (Smith et al. 1997;
Hamza and Anderson 2005), structure of tilled soil layer after
wheeling (Horn et al. 1994), soil water status (Gue’rif 1984),
and short and limited crop rotations with high intensity of strip
cropping and drop in humus content due to increased minerali-
zation and reduced humification. The nature and degree of
traffic-induced compaction is influenced by traffic; Jorajuria
et al. (1997) documented his findings and suggested that most
dramatic compaction was developed in the field as a result of
irregular traffic over soil surface especially when soil was wet,
while control (unplowed land) pertained smallest penetrometer
resistance throughout the profile in comparison to any other
trafficked field. An unplanned and irregular heavy wheeling
over field caused rutted soil surface and compacted soil spot
on different field places (Li HongWen et al. 2000).

Machine size, axle load, and engine vibrations The extent
and nature of soil compaction is influenced by the size of
machine/traffic employed. Increasing the size of agricultural
implements and development of multipurpose machines such
as combine harvester could be a significant cause of soil com-
paction and deterioration. Though such multipurpose ma-
chines save time and energy, high axle load and other heavy
parts of such machines induced high pressure to the ground
(Van den Akker and Stuiver 1989). In a study, Håkansson and
Petelkau (1994) compared the wheel weight, size, and axle
load of various farm implements and concluded that combined
harvester, slurry tankers, and six-row propelled sugar beet
harvester with three axles, having weight more than 25, 30,
and 50 mg, inserted significant amount of pressure on soil,
thus are potential source of soil compaction.

Since it is well documented in literature that axle load has
astonishing impacts in the development of soil compaction
with concomitant reduction in crop performance. Ground con-
tact pressure can be determined by axle load divided by the
surface area of contact between machine and soil. Ground
pressure explains/causes top soil compaction, while high axle
load leads to subsoil compaction (Botta et al. 1999). In inten-
sive agriculture, soil becomes compacted as a result of high
axle load, damaging the structure of tilled soil and subsoil and
reducing crop and soil productivity (Defossez and Richard
2002). In fields, where machines with heavy axle loads are
employed, compacted soil can be assessed and appraised along
wheel tracks or on turning strips with more effects on top soil
(Balbuen et al. 2000). Hetz (2001) suggested that heavy trac-
tors and field machines applied high amount of pressure on

soil; however, the magnitude of pressure can be varied accord-
ing to soil texture. For instance, in coarse-textured soils, axle
load exerted pressure in vertical direction; on the other hand, in
fine-textured soils, transmission would be in multidirectional
soil (Smith et al. 2000). Possible reason for such variation
could be due to variation in the proportion of macropores in
different textured soils (Smith et al. 2000; Radford et al. 2000;
Ridge 2002). The severity of detrimental effects caused by
machine size and/or axle load on crop yield can be contingent
to the degree of antecedent soil moisture, soil texture, and
tillage systems (Salire et al. 1994; Soane and Van Ouwerkerk
1994). Therefore, some of the researchers proposed soil and
climate data as an independent variable in exaggerating the
susceptibility of soil towards compaction (Batey 2009).
However, combined effects of high axle load with high mois-
ture could result in soil compaction to deeper depth (Ansorge
and Godwin 2007). Any mechanical energy that impacts indi-
vidual soil particles can cause compaction. Vibration due to
heavy farm mechanical implements can compact soils effec-
tively at higher moisture contents. Vibrations actually impose
additional impact and pressure with high intensity than axle
load and other factor on soil particles. Speed of tractor together
with vibration intensity can cause significant effect on soil
compaction. Vibratory effects and saturation of crawler trac-
tors imposed enough pressure on soil to compact it.

Number and size of wheels and tires The number, size, and
type of wheels caused soil compaction to variable extent. A
tractor with more number of tires exerts less pressure on soil
as compared to tractor with single tire on each side of tractor.
This difference is due to high ground pressure exerted by single
tire per unit area. A strong relation was observed between tire
size, number of tires, and depth of compacted soil (Stephen et al.
1985). Moreover, multitire farm implements showed less com-
paction as compared to single-tire farmmachines, as in multitire
farm implements width ratio increases with substantial reduction
in inflation pressure (Raper et al. 1994; Schäfer-Landefeld et al.
2004). Moreover, different studies showed that dual tires have
less impact on subsoil compaction compared to single tire with
same axle load (Thurow et al. 1986; Defossez and Richard
2002; Hamza and Anderson 2005). Therefore, from the litera-
ture, it is quite apparent that the number and the size of tires have
great impact in causing soil compaction.

Soil-tire interaction and number of passing Though the
overuse of heavy machinery has already been recognized
as the main reason for soil compaction (Vitlox and Loyen
2002), nonetheless soil-tire interaction is another factor that
also influences the magnitude of soil compaction. Factors
such as soil type, number of tire, size of tires, and axle load
contribute towards soil-tire interaction (Defossez and
Richard 2002; Hamza and Anderson 2005). Several studies
also highlighted further soil surface area as an important
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trait while studying soil-tire interaction in relation to soil
compaction (Raghavan et al. 1979; Vitlox and Loyen
2002; Saffih-Hdadi et al. 2009). Tire stiffness has also a
substantial influence on ground; however, inflation pressure
played crucial role in governing the magnitude of soil com-
paction due to tire stiffness (Saffih-Hdadi et al. 2009).
Response of inflation pressure on ground contact pressure
and beneath ground surface was studied by Jarosław Pytka
(2005), who noted that by lowering the inflation pressure,
soil-tire interaction can be modified by altering soil-tire in-
terface pressure, tire performance, and rutting effect.
Tractor is an integral part of any farming system; an under-
standing of its involvement in managing soil-tire interaction
might be an essential tool for engineers. Soil-tire interaction
could also be determined by selecting tire geometry, tire
type, lug design, inflation pressure, and dynamic axle load.
Moreover, these parameters could help engineers in design-
ing tires to improve their performance under given
conditions.

Subsequent passing over same piece of land could lead to
severe soil compaction. In a study, Voorhees (1979) evalu-
ated the impact of the number of tractor passes on soil den-
sity and indicated that after pass, significant compaction in
clay soil occurs up to the depth of 75 mm, while after three
passes, soil compaction propagated to depth ranging from
150 to 300 mm. Other studies also found that repeated
passes of agricultural machinery over same location in-
crease soil compaction (Chehaibi et al. 2012; Botta et al.
2009). However, Hamza and Anderson (2005) showed that
first pass was more effective in inducing soil compaction as
compared to second or third pass, as first pass exerted a
significant amount of ground pressure on top soil, whereas
under several passes, compaction would be severe in hori-
zons close to soil surface (Wiermann et al. 1999).
Infiltration capacity and the number of passing of different
implements could be used to determine degree of soil com-
paction. Infiltration capacity of silt soils decreased up to
80% after multiple passes, while reduction in infiltration
capacity was evident only up to 35% (Allen and Musick
1992; Allen and Schneider 1992). Bulk density and cone
index are other soil parameters which can be used to exam-
ine level of soil compaction after tractor passing; nonethe-
less, a study showed that the use of bulk density as potential
soil parameter is not suitable for studying soil compaction
after numerous passing (Brussaard and van Faassen 1994).
A tractor with 28 tires increased soil bulk density until fifth
pass; following this, bulk density started decreasing; how-
ever, cone index was found to be a more suitable parameter
to understand the role of number of passing in causing soil
compaction (Raghavan and McKyes 1978). This could be
due to changes in pore space as well as changed fluxes and
storage of gases, water, and nutrients (Brussaard and van
Faassen 1994).

3. Soil moisture content

Soil moisture content is the most influencing factor that makes
soil susceptible to compaction, as penetration resistance in-
creases and soil water potential decreases (Lipiec et al.
2002). In other words, rising soil moisture content causes
reduction in macropore spaces and leads to decline in load
support capacity of the soil (Kondo and Junior 1999) and
permissible ground pressure (Medvedev and Cybulko 1995).
Moreover, contribution of soil water content towards soil
compaction is dependent on deformability of soil,
precompression value, stress dissemination ability, and con-
tact area between soil and tire. Soil gets compacted up to a
certain value of soil moisture availability, regarded as opti-
mum soil moisture; above this limit, decrease in soil compac-
tion occurred as soil becomes increasingly plastic and incom-
pressible. It is well documented that the drier the soil, the
lower will be stress transformation and the lower will be de-
formation in soil structure (Batey 2009). It could be a great
deal to supervise supportive role of water contents in causing
soil compaction, while scheduling farm trafficking and culti-
vation operations (Ohu et al. 1989). Several studies revealed
numerous factors associated with soil degradation, including
high moisture content, more number of passes, and timing of
tillage (Bakker and Davis 1995; Håkansson and Lipiec 2000).
Ground pressure up to 160 kPa exerted onmoist soil at a depth
of 12–17 cm resulted in significant increase in bulk density
with significant decrease in air permeabili ty and
macroporosity, while only minor changes were noticed in soil
structure at depth of 32–37 and 52–57 cm, when ground pres-
sure of 130 kPa was applied (Gysi et al. 1999). Thus, it can be
suggested that in order tominimize compaction, it is important
to till soil at appropriate soil water content. Decrease in total
porosity is accompanied with increase in soil moisture con-
tent, causing compaction to deeper in soil profile (Soane and
Van Ouwerkerk 1994; Batey 2009). Depth and width of
compacted zone are governed by high moisture content, caus-
ing low structural porosity and high structural deformation. It
is well documented that decrease in bulk density coupled with
increase in soil moisture causes reduction in permissible
ground pressure of agricultural vehicles to permit crop pro-
duction (Medvedev and Cybulko 1995). Soil moisture content
also determined aggregate stability and tensile strength of soil
aggregates. Study by Lipiec and Tarkiewicz (1986) elicited
that increase in soil moisture content caused decrease in ag-
gregate diameter and porosity, while increase in bulk density
which is a character of compacted zone leads to increase in
aggregate tensile strength. The effect of soil moisture is much
stronger in the subsoil than in the topsoil; however, for com-
parison and calculation of soil moisture content, determination
of liquid, plastic, and solid limits of soil might be a better scale
(Quiroga et al. 1999). These limits are the functions of clay
contents and their mineralogical characteristics.
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4. Treading action of animals

Livestock production is an integral part of agriculture world-
wide. Continuous and long season grazing has attained substan-
tial importance, while dealing with soil compaction. It has been
reported that constant grazing and livestock walking caused
considerable effects on soil properties and have negative effects
on soil stability index (e.g., Imhof et al. 2000; Silva et al. 2000b)
Grazing animals also disrupt soil aggregates, resulting in reduc-
tion in soil aggregate stability (Ferrero and Lipiec 2000). Other
negative effects associated with animal trading are associated
with reduction in soil structure and/or soil porosity (Di et al.
2001). Extent of alteration in soil properties due to the livestock
depends on soil type and soil moisture; (e.g.,) fine-textured soils
are more vulnerable to trampling action of grazing animals than
coarse-textured soil (Batey 2009). Moreover, dry soil faced less
trampling action due to high aggregate stability index; however,
moist soils are more vulnerable to compaction (Mosaddeghi
et al. 2000).

Under intensive agriculture, escalation of dairy farming and
livestock rearing exaggerates the deleterious effects of trampling
on soil quality, thus results in sizeable reduction in production
level and pasture quality (Mitchell and Berry 2001). Animals’
hooves exerted ground pressure in same way as applied by
tractor tires. In tractor, the weight of axle load has been applied
on soil via tires; similarly, thewholeweight of animalmay apply
great pressure on soil under its hooves. Compaction by animals
seems to be more destructive than tractor, though tires have
more width than animal’s hoof, while ground pressure decreases
with increase in width. Therefore, more pressure will be exerted
on given soil area under hooves. Furthermore, animal weight
and soil moisture content determine the depth of soil compac-
tion by trampling. Experiments showed that the effects of tram-
pling in causing soil compaction at different soil depths differed
in different soil types. In soil depths of trampling-induced
compacted soils, some reported compaction effects were limited
to depth of 20 cm (Ferrero and Lipiec 2000; Terashima et al.
1999), some observed highest soil density at the top 5-cm soil
layer (Vzzotto et al. 2000), and other suggested dense zone with
reduced water infiltration to depth of 7.5 cm (Usman 1994).

Since treading action of animals affected all soil properties,
soil penetration resistance is a crucial soil property, which is
highly sensitive to animal trampling action. Hamza and
Anderson (2005) reported critical values of penetration resis-
tance in response to grazing, water table depth, and weight of
animal. They noted that permissible limits of penetration resis-
tance were ranged from 600 to 800 kPa, depending on animal’s
weight, homogeneity and heterogeneity in soil, and vegetation.
The level of grazing also causes soil compaction to a varied
extent, (e.g.,) more soil compaction with high bulk density
was observed in heavy-grazed soil as compared to light-grazed
or medium-grazed soils (Mapfumo et al. 1999). Furthermore,
soil saturation, root ratio, and soil water infiltration can also be

indictors of examining soil compaction (Vahhabi et al. 2001;
Gokbulak 1998; Mwendera and Saleem 1997), as these soil
properties are highly vulnerable to trampling action of animals.

5. Soil organic matter

Organic matter in soil plays significant role in maintaining soil
biological activities. High organic matter results in higher stabil-
ity index, high soil quality, and productivity, while lower organic
matter contents in soil make soil more susceptible to soil com-
paction (Wortman and Jasa 2003). The theory behind the
preventing action of organic matter might be examined by the
presence of residues over soil surface, which is a prominent
characteristic of conservation tillage system. These residues
might absorb the pressure exerted by high axle load, preventing
to create voids in soil. Furthermore, organic matter/residues on
soil surface have been shown to cushion the effects of soil com-
paction (Hamza and Anderson 2005). A significant layer of
surface crop residues might be compressed under compressing
action of heavy machineries, but they can retain their shape and
structure once the traffic has passed. Organic residues may act
like a sponge that can be compressed but comes back to its
normal shape. However, excessive traffic may break organic
residue, might be a result of tire slipping or soil stirring actions
of tires. Organic residues in soil profile are more significant than
on surface, as this organic matter attached to soil particles espe-
cially clay particles and binds microsoil and macrosoil aggre-
gates, thus preventing soil from become compacted by the ac-
tion of heavy machines. Conclusively, soil organic matter is a
very important soil property, which can determine the magni-
tude of soil compaction.More soil organicmatter and less would
be a result of susceptibility of soil towards compaction.

7. Raindrop impact

Direct beating action of raindrop can disperse soil particles via
breaking the soil surface. Soil surface got cracks, and fine parti-
cle becomes separated from soil clods, which when accompa-
nied with water stagnation settle down tomake hard layer of soil
thus causing soil compaction. Raindrop when fell on ground
transfers its energy to soil particles, and when energy becomes
higher than energy-carrying/bearing capacity of soil particles,
they (particles) became separated from soil. In rain-fed areas,
heavy and deep tillage is employed prior to rainfall especially
monsoon rainfall in order to infiltrate more water and reduce
runoff. After rainfall, land leveling is done using heavy planker
to create natural soil mulch for water conservation in soil. The
high weight of planker and tractor when coupled with ample
moisture in soil can lead to soil compaction. Though rainfall is
the only source of water in those areas, the degree of soil com-
paction is also high. Plankers with less weight or layer of resi-
dues on soil surface before rainfall could be appropriate tech-
nique to reduce soil compaction and direct tearing action of
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rainfall. No exact study has been reported; however, it will be
more important to study this in humid areas.

Consequences of soil compaction

Literature has elicited numerous factors responsible for soil
compaction. Most of the factors are intensively employed in
modern agriculture. The importance of these factors especially
mechanization cannot be rendered in today’s agriculture.
However, knowledge regarding the optimum limits of these
factors may help in controlling compaction. Furthermore, the
detrimental consequences of soil compaction can also be taken
under consideration while controlling compaction. Soil compac-
tion caused numerous effects on soil and crop plant. The detri-
mental effects of soil compaction on soil properties and crop
growth and development will be reviewed in this section. A
summary of the knowledge regarding the effects on soil com-
paction on soil properties and crop plant’s morphological and
physiological growth has been presented in Fig. 2; however,
significant explanation has been provided below.

On soil physical properties

1. Total porosity

Soil consists of three types of pores; macropores, mesopores,
and micropores. Air-filled pores are macropores, which supply
oxygen to soil flora and fauna. Decrease in macropores resulted
in the development of anoxia conditions, thus interferes with
crop growth and development. Soil compaction reduces pore
spaces and consequently checks the transfusion and

transportation of air and water within soil profile and also water
retention characteristic (Dexter 2004). Alteration in pore size
distribution due to compaction resulted in increased runoff, de-
creased infiltration, and high erosion losses. Heavy use of farm
implements enforced high axle load and ground pressure on soil,
causing shrinkage in pores, and consequently, volume of pores
decreased (Pagliai and Vignozzi 2002). As reviewed in the
above sections, tillage system has noticeable effects on pore size
distribution. Under conventional tillage system, extensive loos-
ening of soil develops more macropores at the beginning of the
season (Botta 2000), while later on,macropores became reduced
due to soil compaction. Structural instability of pores is highly
dependent to timing, intensity of field traffic, and rainfall pattern
and tends to change with alteration in these factors (Mapa et al.
1986; Karunatilake and van Es 2002). Dexter (1988) defined
soil compaction as a deteriorating process that alters spatial ar-
rangement, size, and shape pores in soil profile. In another study
by Boizard et al. (2013), who examined the effect of repeated
wheeling on pore size distribution and pore volume, they further
noted that no visible macropores were observed in highly
compacted zone. Moreover, massive structure disruption and
smooth breaking surface are also developed in this zone. The
destruction effect of compact zone has also been reported by
Koch et al. (2008), who pointed out that compacted zone nega-
tively affects macropore volume and air permeability of the
topsoil (0.05–0.1 and 0.18–0.23 m) and subsoil (0.4–0.45 m)
layers.

2. Hydraulic conductivity

Hydraulic conductivity especially saturated is highly sensitive
to soil deformation (e.g., Green et al. 2003), especially soil

Fig. 2 Summary of the
knowledge of the effects of soil
compaction on soil plant
morphological and physiological
growth and soil properties
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compaction (e.g., Whalley et al. 1995) and alteration in poros-
ity (e.g., Matthews et al. 2010). Decrease in soil aggregate
stability, increase in soil bulk density, and decrease in air voids
result in decrease in hydraulic conductivity of soil (Nayak
et al. 2007). Moreover, Radford et al. (2000) reported that
increase in soil strength due to compaction also reduces hy-
draulic conductivity. Saturated hydraulic conductivity is a
function of structural distribution of pores, more vulnerable
to reduction than unsaturated hydraulic conductivity. Under
this milieu, image analysis of micropores revealed that satu-
rated hydraulic conductivity is in linear relation with degree of
availability of elongated soil pores. The higher the elongated
soil pores, the higher will be the conductivity, whereas soil
compaction decreases total porosity, consequently decreased
soil hydraulic conductivity (Pagliai et al. 2003). Among soil
pore type, water is retained in micropores rather than
macropores, so even if average porosity is the same, the mag-
nitude of micropores and macropores might be different
(Kutílek and Nielsen 1994). Soils having more micropores
have high saturated hydraulic conductivity than soils with
more macropores.

Type of machinery, tire inflation, and ground pressure
exerted varying levels of stress for soil compaction and also
governed distribution of compacting force in soil either verti-
cally or horizontally. Thus, examination of effects of vertical
soil compaction or horizontal soil compaction on hydraulic
conductivity might be conducted possibly and practically
(Henshall and Smith 1989). Furthermore, degree of alteration
in hydraulic conductivity varies with different soil depths even
within the same soil profiles. Saturated hydraulic conductivity,
for example, was found lower in top soil than in subsoil at the
same bulk density, as noted by Keiko (2005). They also found
that varying values of conductivity at top soil were showed
scattered when correlated with mean value while of subsoil
were very close to bulk density curve. This implies that bulk
density is high in subsoil compaction than in top soil; conse-
quently, reduction in hydraulic conductivity occurs in the
same fashion. Furthermore, this was further substantiated as
Unger and Kaspar (1994) computed effect of single pass and
multiple passes on reducing extent of reduction in hydraulic
conductivity at different soil depths. They noticed that at
deeper depths, significant reduction of saturated hydraulic
conductivity would occur; however, these depths varied with
number of passing and wheel load.

3. Aggregate stability

Soil aggregate stability is an important index of soil quality,
and soil physical property affects soil productivity and sus-
tainability. Soil aggregates are actually groups of soil particles
that stick together as result of cohesive forces among particles
and interaction of organic matter, cations, and anions with soil
particles. Aggregate stability index defines the capability of

soil particles to oppose dispersion and degeneration of soil
peds/clods. Tillage exerted series of disruptive forces to disin-
tegrate soil particle thus reducing stability index of soil. Soil
with high stability index is more productive, produces higher
crop yield, while with low stability index, soil erosion looses
are high. Soil compaction reduces formation of soil aggre-
gates; it becomes worsen when high axle load and high mois-
ture content together assaulted on soil. Spatial arrangement of
these aggregates within soil profile determines the extent of
effects of soil compaction (Dexter 1988). Heavy tillage, high
axle load, ample moisture, rutting action of tire, and velocity
and intensity of wheeling affect the soil aggregate stability.
Alteration in aggregate stability is an early indication of deg-
radation or deterioration of soil quality. Among tillage sys-
tems, conservation tillage system resulted in high structural
regeneration and aggregate formation than conventional till-
age system (Alakkuku et al. 2003). Furthermore, some other
authors also reported that conventional tillage deteriorates soil
quality via reduction in organic matter content, soil aggre-
gates, and porosity, while conservation tillage improves soil
quality (Wiermann et al. 2000). In another study by Pagliai
and Vignozzi (2002), heavy tillage together with moisture
reduces volume of pores, and consequently, soil aggregates
pressed together and their structures become disintegrated
and altered in non-accommodating shapes (Defossez and
Richard 2002). Compacted soils characterized by low pore
spaces and low soil aggregate stability index resulted in re-
duced infiltration and increased runoff. Surface crusting is
another indicator of compacted soil, associated with low pore
spaces and weak aggregates resulted in high soil erosion
losses (Way et al. 2005). Sandy soils have more dispersed
particles with less aggregate stability. Soil compaction has
relatively more destructive effects on clayey soils as they have
more binding of soil aggregates than sandy soils.

4. Penetration resistance

Penetration resistance elicits the work done by root to enter in
soil (Braim et al. 1992). Higher mechanical impudence, higher
will be compaction, results in higher penetration resistance,
which results in more work done by roots. This soil property is
widely employed to compute the degree of changes in soil
porosity and aggregate stability (Dexter et al. 2004). Soil com-
paction caused significant increase in penetration resistance
(Chaney et al. 1985). Penetration resistance increases with
increase in bulk density and lower water potential (Douglas
1992). Root penetrability reduces with increase in penetration
resistance (Unger and Kaspar 1994). The decrease in penetra-
tion level is directly correlatedwith increase inwater potential.
Dry soils have more penetration resistance as reported by
Lipiec et al. (2002), who noted that in the presence of high
soil water, soil strength and penetration resistance would be
low (Horn et al. 1995).
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5. Bulk density

Bulk density is defined as oven dry weight of soil per unit
volume. Bulk density determines the extent of porosity in soil.
Soils with good structure are characterized by increased soil
macroaggregates and porosity. Increase in bulk density is re-
ported with increase in soil compaction, as compacting forces
squeeze the volume of soil via eliminating pore spaces.
External stress (high axle load) reduces aggregate stability of
soil, thus increasing build density of soil. It is well document-
ed that increase in bulk density caused reduction in yield as
observed in Argentina. Ressia et al. (1998) reported if bulk
density >1.2 mg m−3 resulted in 30% decrease in maize yield.
Other consequences associated with increase in bulk density
due to compaction are high penetration resistance, less infil-
tration, high runoff, and more soil erosion. The number of
passing also affects the extent of bulk density; Allen and
Musick (1997) reported that bulk density could be increased
up to 20% due to multiwheeling. Under different tillage re-
gimes, bulk density varies, as conventional tillage initially
resulted in high porosity and less bulk density in early season,
while later on, due to compaction-causing agents, the number
of pores decreases and bulk density increases, could be
prolonged (Yavuzcan et al. 2000). However, under conven-
tional tillage system, initially bulk density and penetration
resistance are more, while the action of natural biological
agents (e.g., worms, fungi) improves productivity of soil by
enhancing aggregate stability, porosity, and organic matter and
reducing bulk density.

On crop performance

Morphological alterations Soil compaction reduces crop
yield and growth by influencing numerous morphological and
physiological processes (Fig. 2). Numerous studies showed dif-
ferent extent of growth and yield reduction in numerous plant
species due to soil compaction (Table 1). Growth and develop-
ment of aboveground crop plant depend on the performance of
belowground part (root); however, root performance is majorly
governed by soil conditions in root rhizosphere (Trouse 1977).
Soil compaction results in the significant reduction in soil po-
rosity and soil aeration (as mentioned above); roots show
stunted growth and poor root proliferation (Dexter 2004).
Root-soil compaction interaction may be complex, depends on
the extent of soil compaction and the degree of modifications in
soil properties. Reduction in root growth might be associated
with mechanical injury to taproots, high penetration resistance
of compacted soil, and less nutrient bioavailability (Rosolem
et al. 2002). It is well documented that root penetration restricted
to significant level when soil penetration resistance approaches
to 2 MPa pressure, and above this limit, no roots virtually were
able to grow (Taylor et al. 1966).

Besides interfering root proliferation in soil, soil compac-
tion also causes numerous effects on aboveground parts.
Several studies revealed that soil compaction caused substan-
tial yield reduction in many crops (Botta et al. 2002; Jorajuria
et al. 1997). Soil compaction reduces plant growth by reduc-
tion of the development of plants. A study showed that re-
duced plant height, stem diameter, and damaged roots were

Table 1 Effects of soil compaction on plant growth and yield

Plant species Soil compaction
depth

Soil compaction induced by Effects on plant growth and/or yield Reference

Festuca rubra 0–15 cm Brinkman roller simulator (BTS) Reduction in RDM (8.80%), RLD (10.62%),
and RSA (6.14%)

Głąb and Szewczyk (2015)

Festuca ovina 0–15 cm BTS Significant reduction in RDM (21.36%),
RLD (23.14%), and RSA (20.69%)

Festuca arundinaceae 0–15 cm BTS Reduction in RDM (26.50%), RLD
(27.17%), and RSA (20.30%)

Agostis capillaris 0–15 cm BTS Reduction in RLD (7.42%)
Agostis stolonifera 0–15 cm BTS Reduction in RDM (17.98%), RLD

(27.42%), and RSA (−14.80%)
Hordium vulgare L. 0–60 cm Tactor MTZ-82 Reduction in RDM (74%) Trükmann et al. (2008)
Hordium vulgare L. 0–40 cm Tractor Reduction in RDM (39.09%) Lipiec et al. (2003)
Quercus castaneifolia – Compaction hammer Reduction in RDM (62.84%) and TBM (53.38%) Jourgholami et al. (2016)
Raphanus sativus 15–50 cm Wheel trafficking Reduction in RDM (31%) and TBM (31.25%) Chen and Weil (2010)
Brassica napus 15–50 cm Wheel trafficking Reduction in RDM (50%) and TBM (62.89%)
Secale cereale 15–50 cm Wheel trafficking Reduction in TBM (32.01%)
Cicer arietinum 1.2–1.6 mg/m3 – Reduction in SDW (51%) Mohanty et al. (2015)
Triticum aestivum Cult. Avalon 0.75 MPa – Reduction in TBM (79.35%) Jin et al. (2015)
Triticum aestivum Cult. Battalion 0.75 MPa – Reduction in TBM (70.63%)
Triticum aestivum Cult. Cadenza 0.75 MPa – Reduction in TBM (87.61%)
Triticum aestivum Cult. Robigus 0.75 MPa – Reduction in TBM (77.97%)
Cork oak 1.37 MPa – Reduction in RDM (44.01), MRD (26.17%),

PH (36.4%), and TBM (31.27%)
Jourgholami et al. (2016)

RDM root dry matter, RLD root length density, RSA root surface area, MRD mean root diameter, SDM shoot dry matter, PH plant height, TBM total
biomass
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due to reduced nutrient uptake in compacted soils (Ying et al.
2007). Shoot density, verdure, and root growth of turf grasses
were reduced twofold due to compaction (Carrow 1980).
Ishaq et al. (2001a) reported that 12 to 23% decrease in grain
yield and 9 to 20% decrease in straw yield were noted due to
subsoil compaction. They also observed that wheat plants un-
dergone with reduced number of shoots per unit area, root
growth, and finer and denser root system in upper soil layer
of 10 cm. Moreover, in a study, it was noted that for each
100 kgm−3 increase in bulk density, maize grain yield reduced
by 18% (Canarache et al. 1984). Moreover, Montagu et al.
(2001) reported that there was less seed germination and
reduced early root growth in compacted zone, might be
ascribed to reduced nutrient uptake and poor aeration.
Nonetheless, seed germination in compacted soil also
depends on clay contents and soil moisture level. For
instance, Ishaq et al. (2001b) noted poor seed germination
and stunted root growth in compacted soils having high clay
contents under dry climate. Reductions in soil water availabil-
ity due to poor water infiltration and less number of
macropores account for reduced root growth and lower N
uptake (Rosolem et al. 2002). Several studies have document-
ed increased rates of denitrification or NO production in
compacted soils (Torbert and Wood 1992), but other N losses
may also occur through increased surface runoff in compacted
soils due to lower water infiltration.

Physiological alterations Soil compaction also induces soil-
deficit conditionsdue to lowerwaterholdingor infiltration in soil.
Suchwater-deficit conditionson theotherhandcausealteration in
different physiological processes. Some researchers found that in
compactedsoils, reducedwateruptake resulted in reducedstoma-
tal conductance and higher accumulation of abscisic acid (ABA)
in roots (Tardieu et al. 1992). Young et al. (1997) attributed the
reduction in leaf appearance rate to a hormonal signal generated
by impeded roots. Soil compaction induced a limitation in root
growth that can also be reflected by a decrease in the root/shoot
ratio. It is nowknown that a limitation in root sink activity results
in theaccumulationofcarbohydrates in leaves, thusregulating the
rate of carbon assimilation (Arp 1991). This root-to-shoot feed-
back is believed to occur in the form of an increase in ABA
concentration in the shoot xylem sap (Tardieu et al. 1992;
Turner 1997). Such an increase could raise stomatal resistance,
therefore reducing carbon fixation. Moreover, plants exposed to
severe soil hardness also result in reduced photosynthesis via
stomatalornon-stomatal inhibition. Impededroots tocompaction
may face anaerobic condition due to less aeration and high respi-
ration,whichcanreduceplantgrowthanddevelopment. Inmaize,
theincrease insoilbulkdensitydecreasedcarbonassimilationrate
especially in early growth stages, and themain effect of soil com-
paction on assimilate partitioning occurred on carbon exudation,
which increased considerably to the detriment of root carbon
(Tubeileh et al. 2003). Further, soil compaction strongly affected

the length of seminal and seminal adventitious roots, and the
number and length of lateral roots developed on the seminal root
of triticale and maize (Grzesiak 2009). Furthermore, along with
the restriction of root growth, significant decline inψ,Fv/Fm, and
gas exchange in triticale and maize (Grzesiak 2009) was ob-
served. Maize whose root growth was more heavily restricted
by the soil compactioncompared to triticale showedgreater dam-
ages inphysiologicalcharacteristics in leaves,while the impacton
triticalewas relatively small (Grzesiak 2009). The results indicat-
ed that damages in photosynthesis, water relation, and shoot
growth by soil compactionwould be closely related to sensitivity
of root system architecture to highmechanical impedance of soil
(Tubeileh et al. 2003). A clear relation was proposed byWilliam
et al. (1994) that reduction in stomatal conductance, resulted in
high xylem sap ABA, resulted in reduction in leaf expansion of
soil compaction-stressed plants.However,Munns (1992) argued
that increased ethylene production could be correlated to reduc-
tions in shoot growth (Morgan et al. 1993). Ethylenemay act as a
root source chemical signal andmay also be involved in mediat-
ing shoot responses to soil compaction (He et al. 1996). For in-
stance, Hussain et al. (1999) described the role of ethylene in
mediating the impactof soil compactiononshootand rootgrowth
in tomato. Plants when subjected to soil compaction exhibited
least physiological growth at merismatic region.

Conclusion

Soil compaction is the worst type of land degradation that
limits agricultural productivity. Numerous factors are respon-
sible for soil compaction, comprised of high mechanical load
and tillage system, and its associated adversities resulted in
alteration in soil health via modifying soil physical and chem-
ical activities. Besides these effects, soil compaction repressed
the crop performance by influencing the growth and the de-
velopment of plant. Stunted growth, leaf discoloration, re-
duced plant height, and shallow root system are predominant
morphological effects of soil compaction, while less nutrient
uptake, reduced leaf gas exchange, carbon assimilation, and
less translocation of photosynthates are detrimental effects of
soil compaction.
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