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The carbon budget of forest ecosystems, an important component of the terrestrial carbon cycle, needs to be ac-
curately quantified and predicted by ecological models. As a preamble to apply the model to estimate global car-
bon uptake by forest ecosystems, we used the CO2 flux measurements from 37 forest eddy-covariance sites to
examine the individual tree-based FORCCHN model's performance globally. In these initial tests, the FORCCHN
model simulated gross primary production (GPP), ecosystem respiration (ER) and net ecosystem production
(NEP) with correlations of 0.72, 0.70 and 0.53, respectively, across all forest biomes. The model underestimated
GPP and slightly overestimated ER acrossmost of the eddy-covariance sites. An underestimation of NEP arose pri-
marily from the lower GPP estimates.Model performancewas better in capturing both the temporal changes and
magnitude of carbonfluxes in deciduous broadleaf forest than in evergreen broadleaf forest, and it performed less
well for sites inMediterranean climate.We then applied themodel to estimate the carbon fluxes of forest ecosys-
tems on global scale over 1982– 2011. This application of FORCCHN gave a total GPP of 59.41± 5.67 and an ER of
57.21± 5.32 Pg C yr−1 for global forest ecosystems during 1982– 2011. The forest ecosystems over this same pe-
riod contributed a large carbon storage, with total NEP being 2.20± 0.64 Pg C yr−1. These values are comparable
to and reinforce estimates reported in other studies. This analysis highlights individual tree-based model
FORCCHN could be used to evaluate carbon fluxes of forest ecosystems on global scale.
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1. Introduction

Forest ecosystems are important components of the terrestrial car-
bon cycle because of their ability to store much larger amounts of car-
bon (C) than other terrestrial ecosystems (McKinley et al., 2011; Gray
and Whittier, 2014). Land ecosystems represent an important C sink
that annually removes from the atmosphere approximately 29% of the
global fossil-fuel and land-use-change emissions (Le Quéré et al.,
2009). Accurate quantification of the C budget, its dynamics and its
drivers in forest ecosystems is a critical component of efforts to reduce
greenhouse gas emissions and mitigate the effects of projected climate
change through forest C management (White et al., 2005; Seidl et al.,
2012; Russell et al., 2015). Although forest-inventory databases offer
the potential for estimating the regional ecosystem C budgets in some
locations, ecological models have proven to be essential tools for
expanding the coverage of these data. This is usually accomplished
throughmodel simulations based onmaps of the driving environmental
variables and site conditions. For remote-sensing data sets, ecological
models have found application in interpreting C fluxes from observa-
tions into estimates for C cycle studies. These models vary in their
level of abstraction and also in the spatial resolution used in their
applications.

The mostmodels, including TEM (McGuire et al., 1992), BIOME-BGC
(Running and Hunt, 1993), CENTURY (Parton et al., 1993), CASA (Potter
et al., 1993), IBIS (Foley, 1994), SiB2 (Sellers et al., 1996), LPJ (Sitch et al.,
2003) and ORCHIDEE (Krinner et al., 2005), have been developed to as-
sess or project forest ecosystems processes by considering fundamental
processes (photosynthesis, respiration, etc.) and aggregated state vari-
ables (e.g. living plant tissue, soil organic carbon storage, etc.) shared
across all terrestrial ecosystems as a paradigm for simulation. In general,
the dynamic equations are parameterized to represent relatively large
areas (~0.1° to ~0.5° latitude × longitude blocks). The characteristics
and critical driving factors of the C budget vary across different terrestri-
al ecosystems. These differencesmay be acerbated depending on differ-
ences in the structure and internal functions across ecosystems. This has
led to applications of other model formulations with increased com-
plexity. Hence, several individual-based and stand-based models for
forest ecosystems have been developed to investigate the C cycle scaling
up from on patch-scale consideration, for instance, Hybrid (Friend et al.,
Fig. 1. Spatial distribution of studied EC sites and global forest types based on International Ge
classification system. DNF, ENF, MIF, DBF and EBF denote deciduous needleleaf forest, evergreen
respectively.
1997), LoTEC (King et al., 1997), LPJ-GUESS (Smith et al., 2001), TRIPLEX
(Peng et al., 2002), and INTCARB (Song and Woodcock, 2003). Because
they include detailed descriptions of population dynamic processes,
such as establishment, mortality and the effects of resource competition
on individual growth, these models not only describe tree biomass dy-
namics with greater elaboration (Friend et al., 1997; Smith et al.,
2001; Zhao et al., 2012), but they also have more details in the resolu-
tion of structural features of forests such as canopy heights, average di-
ameters of trees and the statistical distributions of these variables. Such
predictions potentially allow the models to be tested or calibrated
against data produced through recent advances in remote-sensing tech-
nology (Shugart et al., 2015).

In general, to achieve a correct soil C storage and reasonable forest
initial condition, most process-based C models are “spun-up” for
500– 1000 years when the soil C storage becomes stable, and the land-
scape structure develops from a bare-soil starting condition to an as-
sumed quasi-equilibrium vegetation. Note, however, that the quasi-
equilibrium landscape derived from simulation represents an idealized
status, rather than real forest condition. Based on this reason, Yan and
Zhao (2007) proposed utilizing measurement-based inventory data to
characterize the forest initial condition for C cycle simulations, and im-
plemented this in developing the individual tree-based FORest-ecosys-
tem-Carbon-budget-model-for-CHiNa (FORCCHN). Due to the
difficulties in collecting inventory data on regional scale, they used
satellite-derived LAI products to initialize the necessary vegetation, in-
cluding the estimate of how many trees gets planted on plot scale and
what growth state of individual tree could achieve (e.g. tree height),
and then FORCCHN was successfully applied to simulate the C cycle
over China (Yan and Zhao, 2007; Zhao et al., 2012).

The current paper tests how well the FORCCHN model captures the
spatial-temporal variations of gross primary production (GPP), ecosys-
tem respiration (ER) and net ecosystem production (NEP) over the
FLUXNET dataset. Our goals are to: (1) examine model performance
across a global network of flux sites for the first time, and (2) apply
FORCCHN to estimate the C fluxes of forest ecosystems on global scale
for the past 30 years. Such quantification of the C uptake capacity in for-
est ecosystems provides a scientific foundation for predicting future
changes in atmosphere CO2 and climate, and for defining management
options for the global C cycle (Yu et al., 2014).
osphere Biosphere Program-Data and Information Service (IGBP-DIS) DISCover land cover
needleleaf forest, mixed forest, deciduous broadleaf forest and evergreen broadleaf forest,



Table 1
Parameters of soil decomposition rate in the FORCCHN model.

Symbol Unit Carbon pool Value

S1 d−1 Above-ground metabolic litter pool 0.080
S2 d−1 Above-ground structural litter pool 0.021
S3 d−1 Below-ground metabolic litter pool 0.100
S4 d−1 Below-ground structural litter pool 0.027
S5 d−1 Fine woody litter pool 0.010
S6 d−1 Coarse woody litter pool 0.002
S7 d−1 Below-ground coarse litter pool 0.002
S8 d−1 Active soil organic matter pool 0.040
S9 d−1 Slow soil organic matter pool 0.001
S10 d−1 Resistant soil organic matter pool 3.5 × 10−5

Fig. 2. The primary processes and flow charts of the FORCCHN model.
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2. Materials and methods

2.1. Eddy covariance data

The Eddy covariance (EC) technique allows measuring directly net
ecosystem CO2 exchange (NEE) relative to an area (the footprint) of
hundreds ofmeters around EC tower. NEE and NEP have the same abso-
lute values but opposite signs. Data gaps due to sensors malfunctioning
or less than ideal turbulence conditions (Papale et al., 2006) are filled
using different gap-filling methods (artificial neural network and mar-
ginal distribution sampling techniques) described in Papale and
Valentini (2003) and Reichstein et al. (2005). The two main compo-
nents of C fluxes (GPP and ER) are estimated using the flux-
partitioning technique based on the extrapolation of night-timeflux ob-
servations with temperature dependent relations (Reichstein et al.,
2005). The daily EC data used in this study are obtained from the
LaThuile FluxNet free use dataset (http://www.fluxdata.org), AmeriFlux
(http://ameriflux.ornl.gov), European Fluxes Database (http://www.
europe-fluxdata.eu), ChinaFlux (http://www.chinaflux.org) and FFPRI
FluxNet (http://www2.ffpri.affrc.go.jp/labs/flux/index.html). We sim-
ply selected the main sites with typical geographical distribution and
longer measured time series, and a total of 37 EC sites located between
~38°S to ~70°N in latitude are chosen to evaluate the FORCCHNmodel.
The sites cover four major forest types: evergreen broadleaf forest
(EBF), deciduous broadleaf forest (DBF), mixed forest (MIF), and ever-
green needleleaf forest (ENF). Details about the EC sites, the years of
available data and their characteristics as well-corresponding forest
types and Köppen climate classification are provided in Fig. 1 and
Table S1 (Supplement).

2.2. FORCCHN model description

The individual tree-basedmodel, FORCCHN, is driven by daily mete-
orological data and simulates forest seasonal and interannual carbon
budget by coupling soil C cyclemodels on plot scale (~600m2). Depend-
ing on the process considered, FORCCHN runs on daily and annual time
steps (Fig. 2). For an individual tree, the principal daily processes are
photosynthesis, maintenance respiration, photosynthate allocation, ni-
trogen (N) uptake, as well as soil organic matter (SOM) decomposition
and Nmineralization. Model assumes that net photosynthate is only al-
located to the growth and the litter of leaves and fine roots, while the
rest of photosynthate is stored in a so-called ‘buffer carbon pool’ in
daily process. At the end of the year, the cumulative ‘buffer carbon
pool’ is mainly used to support the growth of canopy height and diam-
eter at breast height (DBH), and the production of coarse wood debris
(CWD). Note that if the death occurs in a given year, the C, N from litter
fall and mortality would completely transfer to the soil pools at the end
of the year, and continue to participate in new C, N cycle in the coming
year (Yan and Zhao, 2007). The modelling soil C and N dynamics in
FORCCHN are established based on modified CENTURE sub-model
(Kirschbaum and Paul, 2002). In brief, it includes above- and below-
ground litter pools, woody litter pools and three SOM pools (active,
slow and resistant) with different respective decomposition rates.

http://www.fluxdata.org
http://ameriflux.ornl.gov
http://www.europe-fluxdata.eu
http://www.europe-fluxdata.eu
http://www.chinaflux.org
http://www2.ffpri.affrc.go.jp/labs/flux/index.html
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Fluxes of N are parallel those of C. The litter pool decomposition param-
eters described in Kirschbaum and Paul (2002) are listed in Table 1.

Taking the shade tolerant (ST) and intolerant (SIT) species into con-
sideration along with tree and other generic characteristics, an individ-
ual tree is assumed in FORCCHN to belong to one of the nine plant
functional types (PFTs): rain forest trees (ST and SIT), evergreen broad-
leaf trees (ST and SIT), deciduous broadleaf trees (ST and SIT), evergreen
needleleaf trees (ST and SIT) and deciduous needleleaf trees. The corre-
spondingphysiological and ecological parameters of each PFTs are listed
in Table S2 (Supplement). It is important to realize that these parame-
ters are essentially qualitative and mostly quantitative descriptors of
the attributes of an idealized tree of each functional type. For these rea-
sons, while the parameters can certainly be changed, they are not free
parameters to be fitted arbitrarily.

2.3. Model driving data

2.3.1. Climate input
The climate forcing used in this study includes the daily maximum

and minimum air temperature (°C), precipitation (mm), relative hu-
midity (%), wind speed (m/s), atmospheric pressure (hPa) and total
solar radiation (W/m2). For model validation, daily meteorological
data with the observed C flux are all obtained from the corresponding
EC sites (Section 2.1). For global simulation, climate inputs are derived
through a combination of reanalysis data and observations, and are
available from Princeton University over the 1982– 2011 period at a
grid resolution of 0.5° × 0.5° (http://hydrology.princeton.edu)
(Sheffield et al., 2006).

2.3.2. Soil parameters
Soil parameters are composed of the soil organicmatter (carbon and

nitrogen pool in units of kg C/m2 and kg N/m2, respectively) and soil
physical parameters. The soil physical parameters, which are strongly
dependent on the geographical position, include the soil field capacity
(mm), wilting point (mm), bulk density (kg/m3), sand content (%), silt
content (%) and clay content (%). In the study, the Global Gridded Sur-
faces of Selected Soil Characteristics (Global Soil Data Task Group,
2000) coupled with Harmonized World Soil Database (Nachtergaele
et al., 2012) provides resources for the soil organic matter and physical
parameters.

2.3.3. Satellite-derived vegetation products
Global forest types are derived from International Geosphere Bio-

sphere Program-Data and Information Service (IGBP-DIS) DISCover
land cover classification system, with a spatial resolution of 0.5° × 0.5°
(Loveland et al., 2009) (Fig. 1). The 8-day 5-km LAI of Global LAnd Sur-
face Satellite (GLASS) in 1982 (Liang et al., 2013) is also used to drive the
model. Quality control flags in LAI are applied to screen and reject poor
quality data by product developers. The 8-day LAI are composited into
the yearly maximum and minimum values. Note that satellite-derived
LAI datasets are resampled to the geographic projection and spatial res-
olution of the global climate input.

2.3.4. CO2 data
The monthly mean values of the atmospheric carbon dioxide con-

centration derived from Mauna Loa Observatory, Hawaii, USA during
1982– 2011 are used to drive the model, and the data are downloaded
from the website of Carbon Dioxide Information Analysis
Center(http://cdiac.ornl.gov/).
Fig. 3. Performance of the FORCCHN in simulating daily GPP (gross primary production), ER
site × year basis: (a) CORR- correlation coefficient, (b) RMSE- root mean square error, (c) Bias
EBF (evergreen broadleaf forest), MIF (mixed forest) and DBF (deciduous broadleaf forest), re
‘box’ are the 25th and 75th percentiles of the samples, respectively. The line in the middle of
percentiles of the samples, respectively. N is number of available years.
2.4. Model validation

The model performance is quantified in several ways. For the site
scale simulations, the simulated GPP, ER and calculated NEP from simu-
lated GPP and ER are compared against observed data using correlation
coefficient (CORR), the root mean square error (RMSE), efficiency (E)
(Weglarczyk, 1998; Balzarolo et al., 2014) and bias:

CORR ¼
∑n

i¼1 Si−S
� �

Oi−O
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Si−S
� �2

∑n
i¼1 Oi−O

� �2
r ð1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
Si−Oið Þ2

s
ð2Þ

E ¼
∑n

i¼1 Oi−O
� �2

−∑n
i¼1 Si−Oið Þ2

∑n
i¼1 Oi−O

� �2 � 100% ð3Þ

Bias ¼ 1
n
∑
n

i¼1
Si−Oið Þ ð4Þ

where Si and Oi are daily simulated and observed fluxes, respectively, S
and O represent their averages. The E value can range from−∞ to 100%,
and a value close to 100% indicates a perfect match between the simu-
lated and observed data. A negative value occurswhen the observed av-
erage is a better predictor than the simulation.

To analyze the annual variability of C fluxes, the absolute anomalies
are calculated using annual cumulative data:

Anomalyyr ¼
Fluxyr−Flux

Flux

�����
������ 100% ð5Þ

where Fluxyr denotes cumulative flux for year (yr) and Flux is the aver-
age annual cumulative flux for all available years.

3. Results

3.1. Simulation performance by IGBP forest types

In general, the FORCCHN model could reproduce the observed C
fluxes of forest ecosystems across all 37 EC site (Fig. 3, Table 2). The
greatest CORR value with a small interquartile range is observed in
GPP (CORR = 0.72) across all forest types, followed by ER (CORR =
0.70) and NEP (CORR = 0.53), indicating that NEP is more difficult to
represent among the three C fluxes in our simulations. There is an un-
derestimation in our model for GPP and NEP, with averaged bias values
of −0.41 g C m−2 d−1 and −0.46 g C m−2 d−1, respectively (Fig. 3c,
Table 2).

For GPP and ER, the greatest CORR value occurs in deciduous broad-
leaf forest andmixed forest. Evergreen broadleaf forest not only has the
lowest CORR value, but it also shows the largest interquartile range in
RMSE (Fig. 3b). This means that our model has relatively less predictive
ability for GPP and ER for evergreen broadleaf forest. In terms of bias,
FORCCHN often underestimates the GPP but slightly overestimates the
ER across most forest types.

For NEP, the simulation represents well in deciduous broadleaf for-
est andmixed forest because of the higher CORR values, but the poorest
(ecosystem respiration) and NEP (net ecosystem production) across forest types on a
. Panel figure from top to bottom is Forest ecosystems, ENF (evergreen needleleaf forest),
spectively. Forest ecosystems represent all four categories. The tops and bottoms of each
each box denotes the median value. The upper and lower whiskers are the 5th and 95th

http://hydrology.princeton.edu
http://cdiac.ornl.gov


Table 2
Performance of the FORCCHN in simulating daily carbon fluxes for all forest types.a

Forest types N. site N. data

GPP ER NEP

CORR RMSE −O −S Bias
N. sites
E N 50%

CORR RMSE −O −S Bias
N. sites
E N 50%

CORR RMSE −O −S Bias
N. sites
E N 50%

ENF 16 44,658 0.70 2.01 3.67 2.98 −0.69 7 0.69 1.38 2.76 2.82 0.06 7 0.46 1.95 0.91 0.16 −0.75 0
EBF 8 11,714 0.51 1.98 6.01 5.93 −0.08 1 0.65 1.89 5.73 5.85 0.12 0 0.41 1.78 0.28 0.08 −0.20 0
MIF 5 13,119 0.80 2.27 4.00 3.55 −0.45 4 0.68 1.61 2.78 3.12 0.34 2 0.56 2.20 1.22 0.43 −0.79 1
DBF 8 25,666 0.88 1.99 3.87 3.66 −0.21 8 0.78 1.44 2.97 2.93 −0.04 4 0.75 1.91 0.90 0.73 −0.17 5
Forest
ecosystems

37 95,157 0.72 2.01 4.26 3.85 −0.41 20 0.70 1.53 3.45 3.50 0.05 13 0.53 1.94 0.81 0.35 −0.46 6

a N. site-number of available sites for each forest type; N. data-number of available days; CORR-correlation coefficient; RMSE-root mean square error (g C m−2 d−1);\\O- average of
observation (g C m−2 d−1); −S-average of simulation (g C m−2 d−1); Bias (g C m−2 d−1); N. sites E N 50%-number of sites with model efficiency (E) higher than 50%; Forest ecosystems
represent all four categories.
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performance is found in evergreen broadleaf forest with CORR being
much lower than 0.5. The simulated errors in both GPP and ER could im-
pact the uncertainty of the daily NEP cycle (Richardson et al., 2011;
Schaefer et al., 2012; Balzarolo et al., 2014), as expected there is a rela-
tively larger bias for NEP in our simulation. The FORCCHNmodel under-
estimates the NEP at most EC sites, this is especially true for mixed and
evergreen needleleaf forests since the greatest bias is observed with av-
eraged values being −0.79 g C m−2 d−1 and −0.75 g C m−2 d−1, re-
spectively (Fig. 3c, Table 2).

Table 2 reports the number of sites for which the model efficiency
(E) is N50%. Balzarolo et al. (2014) note that such a value of E indicates
an acceptable level for model's outputs since it means that the simula-
tion explains N50% of the variability of the observations. Overall, the de-
ciduous broadleaf forest sites present a rather large proportion of C flux
simulations with E N 50% (100% for GPP, 50% for ER and 62.5% for NEP),
Fig. 4.Monthly variation of observed and simulated (a) GPP, (b) ER and (c)NEP at four EC sites:
Loo), Harvard Forest site in USA (US-Ha1) and Tumbarumba site in Australia (AU-Tum). The g
while this happens only once for GPP and never happens for ER and NEP
at the evergreen broadleaf forest sites. This further reinforces that
FORCCHN model has limitations in reproducing C fluxes in evergreen
broadleaf forest.

3.2. Temporal variation at the site level

To investigate the modelling of seasonal variations for different for-
est types in more detail, we initially compare the 1:1 relationship be-
tween observed and simulated GPP, ER and NEP across 37 EC forest
sites onmonthly time scale (Supplement, Fig. S1–S3), and then four rep-
resentative sites covering different forest types and different continents
(CN-Cha as a mixed forest site in Asia; NL-Loo as an evergreen
needleleaf forest site in Europe; US-Ha1 as a deciduous broadleaf forest
site in North America and AU-Tum as an evergreen broadleaf forest site
(from top to bottom) Changbaishan site in China (CN-Cha), Loobos site inNetherlands (NL-
rey histogram denotes observation and black dot denotes simulation.
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in Oceania) are chosen to analyze seasonal variations of the three C
fluxes during the year. Given Fig. 4, the simulations capture the seasonal
variation of the observed C fluxes well across four sites with all CORR
values being much higher than 0.6, but there is a moderate model bias
seen in some months.

For GPP, the magnitudes are markedly underestimated in summer
and winter; this is especially true at NL-Loo (evergreen needleleaf for-
est) and AU-Tum (evergreen broadleaf forest) sites, where the
modelled GPP are lower than the observations across all months
(Fig. 4a). FORCCHN predicts nearly zero GPP in winter at middle-high
latitude EC sites in the Northern Hemisphere (i.e., CN-Cha, NL-Loo and
US-Ha1). This result is consistent with previous model studies, such as
Suzuki and Ichii (2010), Schaefer et al. (2012).

For ER, simulations also show good skill for the seasonal variation of
the flux because of the higher CORR values across four sites. At the
Northern Hemisphere site, the simulations and observations perform
that the largest flux occurs from June to August and the smallest flux
is observed from December to February, and such phenomenon is
completely on the contrary at the Southern Hemisphere site (Fig. 4b).
In terms of bias, the result derived from ER shows much smaller value
when comparing with GPP across four sites.

For NEP, the annual course of positive or negative value is well cap-
tured by simulations but FORCCHNmarkedly underestimates the mag-
nitudes of NEP (Fig. 4c), this is particularly so at NL-Loo (evergreen
needleleaf forest) and CN-Cha (mixed forest) sites, where the averaged
bias could nearly reach to −24 g C m−2 month−1 and
−14 g C m−2 month−1, respectively.

We further analyze the simulated and observed annual variation of
GPP, ER and NEP during the available years across 37 EC forest sites
(Supplement, Table S3–S5), and the four representative sites exhibited
in Fig. 4 are also selected to examine the model's simulation ability on
Fig. 5. The same as Fig. 4, but for annual variation. AnomalyObs and AnomalySim are the averag
respectively. The grey histogram denotes observation and black dot denotes simulation.
annual time scale. Given Fig. 5, the interannual variability of NEP is
more difficult to be reproduced thanGPP and ER by FORCCHN, this is ex-
tremely true at NL-Loo (evergreen needleleaf forest) site, in which case
the averaged absolute anomalies of simulated and observed NEP are
105.8% and 32.0%, respectively. Simulated interannual variability of
three C fluxes at US-Ha1 (deciduous broadleaf forest) site tend to pres-
ent great agreement with EC data because the relatively smaller anom-
aly discrepancies are observed when comparing with other three sites.
Due to the limited years being available for comparison, it is hard to an-
alyze the annual variation at CN-Cha (mixed forest) and Au-Tum (ever-
green broadleaf forest) sites, although the simulated and observed C
fluxes show less anomaly discrepancy as the year processes.

3.3. Simulation performance by Köppen climate classification

According to the Köppen climate classification, there exists six dif-
ferent climate types in our studied EC sites (Supplement, Table S1).
Boxplots shown in Fig. 6 report the distribution of the GPP, ER and
NEP annual CORR scores for all EC sites grouped by Köppen climate clas-
sification. The simulation performances in Dfb, Dfc, Cfa and Cfb climate
zones are comparable since FORCCHN always shows the largest CORR
scores with a reduced variation for GPP and the smallest correlation
values with wide interquartile range for NEP. However, there exists ob-
vious discrepancy between simulations and observations for Csa cli-
mate zone with the median CORR values of ER and NEP b0.5 and with
large interquartile ranges. The CORRvalues are distributed away around
themedian values and the Csa forest sites show very inconsistent annu-
al CORR values.

Table 3 reports the averaged CORR scores and number of sites with
model efficiency (E) higher than 50% for climate classes. On average,
FORCCHN shows good skills in simulating C fluxes for forest sites
ed absolute anomalies of the observed and simulated C fluxes during the available years,



Table 3
Performance of the FORCCHN in simulating daily carbon fluxes for Köppen climate
classificationa.

Köppen
climate

N.
site

N.
data

GPP ER NEP

CORR
N. sites
E N 50%

CORR
N. sites
E N 50%

CORR
N. sites
E N 50%

Dfb 5 15,042 0.84 4 0.79 3 0.55 2
Dfc 4 7980 0.72 3 0.79 2 0.61 0
Cfa 6 11,355 0.65 3 0.76 1 0.44 0
Cfb 14 42,683 0.82 10 0.73 6 0.61 4
Af 2 1826 0.45 0 0.73 0 0.57 0
Csa 6 16,271 0.51 0 0.44 1 0.33 0

a N. site-number of available sites for each Köppen climate classification; N. data-
number of available days; CORR-correlation coefficient; N. sites E N 50%-number of sites
withmodel efficiency (E) higher than 50%; Dfb-warm summer continental; Dfc-subarctic:
severe winter; Cfa-humid subtropical; Cfb-marine west coast; Af-tropical rain forest; Csa-
Mediterranean.

Fig. 6. The same as Fig. 3, but for Köppen climate classification: (a) Dfb-warm summer continental: significant precipitation in all seasons, (b) Dfc-subarctic: severe winter, no dry season,
cool summer, (c) Cfa-humid subtropical: mildwith no dry season, hot summer, (d) Cfb-marine west coast: mild with no dry season, warm summer, (e) Af-tropical rain forest and (f) Csa-
Mediterranean: mild with dry and hot summer. N is number of available years.
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located in Dfb, Dfc, Cfa and Cfb climate zones. However, the simulations
for Af and Csa Köppen climate classes present poorer CORR scores, and
number of sites with E higher than 50% are zero at Af sites and happen
only once for ER at Csa sites.

3.4. Global estimation of carbon fluxes

Having tested the model at 37 EC sites to gain an impression of the
model's performance (Sections 3.1–3.3), our next objective is to assess
the global temporal and spatial patterns of C fluxes in forest ecosystems
using FORCCHN model. Here, GLASS-LAI products in 1982 are used to
achieve a forest initial condition, such as DBH and canopy height (Sup-
plement, Fig. S4). Moreover, to insure that the allocation proportion of
organic carbon in ten soil pools (Table 1) are in equilibrium in
FORCCHN, we first spin up the model for 1000 years at each grid and
then take the new allocation proportion and soil C storage as model
input data to simulate C fluxes for the past 30 years.

Fig. 7 reports the spatial distribution of multi-year averaged GPP, ER
and NEP for global forest ecosystems. Overall, GPP and ER are similar
with largest fluxes occurring in the equatorial tropics followed bymon-
soonal subtropical regions (e.g. south and east Asia), and humid tem-
perate regions in eastern North America, western Europe and eastern
Oceania. Boreal forests show the smallest fluxes where the main forest
type is deciduous needleleaf forest (Fig. 7a, b). The resulting spatial pat-
tern is consistentwith theModel Tree Ensemble-based GPP estimations
derived from Jung et al. (2011), Note, however, that the GPP derived
from FORCCHN formost tropical rain forest is ~300 g Cm−2 yr−1 small-
er and for parts of South-Central African ~900 g C m−2 yr−1 larger than
those of Jung et al. (2011), respectively (Ma et al., 2015). In terms of
long-term changes in C fluxes, both GPP and ER present a significant in-
crease (P b 0.01) from 1982 to 2011 regardless of forest type (Fig. 8a, b),
the forest type with the greatest CO2 uptake by photosynthesis and CO2

release by ecosystem respiration are evergreen broadleaf forest, decidu-
ous broadleaf forest andmixed forest, respectively. For global forest eco-
systems, the GPP and ER generated by FORCCHN are 1307 ± 140
(mean ± 1 standard deviation) and 1251 ± 132 g C m−2 yr−1, and
GPP is comparable to the observation-based estimations derived from
Beer et al. (2010) for which the averaged GPP of seven estimations is
1305.4 g C m−2 yr−1. As far as total annual C fluxes are concerned,
total GPP and ER of global forest ecosystems are 59.41 ± 5.67 and
57.21 ± 5.32 Pg C yr−1 (Table 4), respectively, the GPP result is within



Fig. 7. Simulated by FORCCHN spatial distribution of mean (a) GPP, (b) ER and (c) NEP (g C m−2 yr−1) for global forest ecosystems during 1982– 2011.
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the range reported by observation-based estimations of 52.61–
67.54 Pg C yr−1 (Beer et al., 2010) and satellite-based simulations of
37.59–59.77 Pg C yr−1 (Cai et al., 2014).

NEP, as the difference between GPP and ER, presents more compli-
cated spatial pattern than remaining C fluxes. The largest NEP value oc-
curs 20° –40°S in Africa followed by 15° –30°N in subtropical forest
ecosystems. Tropical forest (15°S –15°N) and mid-high latitude (30° –
50°N) forests in Northern Hemisphere are also found to be positive
values (Fig. 7c). Conversely, there exists a weak negative longitude
bands in North of 55°N; presumably in response to the dramatic under-
estimation of NEP for evergreen needleleaf forest and mixed forest
types by FORCCHN(Fig. 3, Table 2). In terms of interannual variation, ev-
ergreen broadleaf forest and evergreen needleleaf forest present an ob-
vious NEP increase (P b 0.01) from 1982 to 2011, while there exists a
significant trend towards reduced NEP as the year processes for decidu-
ous needleleaf forest (Fig. 8c), indicating that the C sequestration capac-
ity of deciduous needleleaf forest shows decreased tendency from 1982
to 2011. The forest types with the greatest C uptakes are evergreen
broadleaf forest, evergreen needleleaf forest and mixed forest, with
total NEP values of 1.12 ± 0.52, 0.54 ± 0.26 and 0.36 ±
0.10 Pg C yr−1, respectively (Table 4). Overall, the global forest ecosys-
tems have been shown to contribute a huge C storage with total NEP
being 2.20 ± 0.64 Pg C yr−1, which is close to the C forest sink of
2.4 ± 0.4 Pg C yr−1 globally for 1990– 2007 (Pan et al., 2011), and is
smaller than the value of 2.33± 0.80 Pg C yr−1 computed from residual
land sink of the global C budget for 1982– 2011 (Le Quéré et al., 2015),
and iswithin the range reported by DGVMsmodel-based estimations of
0.80–3.34 Pg C yr−1 (Supplement, Fig. S5).

4. Discussion

4.1. Model validation across all EC sites

The model predictions in this study underestimated the GPP
based on EC measurements for all forest types (Fig. 3, Table 2), this
phenomenon probably arises from several considerations: I. The
physiological and ecological characteristics of individual tree are
not completely accounted for by PFTs' parameter in FORCCHN
(Section 2.2) since the unified parameters could not characterize
the growth discrepancies among individual trees. This is the most
likely reason why our model predicts a nearly zero GPP at most EC
sites from December to March in middle-high latitude. II. Numerous
studies have already proved that N deposition mainly has a positive
impact on the carbon dioxide uptake by temperate, boreal and sub-
tropical forest ecosystems in the Northern Hemisphere in recent
years (Magnani et al., 2007; Pregitzer et al., 2008; Thomas et al.,
2010; Yu et al., 2014; Piao et al., 2015), and a recentmodel evaluation
also revealed that not accounting for N deposition resulted in a mean
11% lower net primary productivity (NPP) across European forests
by comparing the BIOME-BGC simulations with and without N cy-
cling (Luyssaert et al., 2010). Accordingly, N deposition not taken
into account by the FORCCHNmodel in present study might increase
the GPP estimation's uncertainty (Ma et al., 2015); III. Although
treated here as “observed GPP”, this is not strictly the observed C
flux of the eddy covariance systems but rather estimated from the
observed tower-based NEP. The empirical formulation for ecosystem
respiration and various gap-filled approaches for net ecosystem ex-
change can both introduce biases when NEP is processed and
partitioned into ER and GPP (Yuan et al., 2014a). Accordingly, the
“observed GPP” is likely to affect the uncertainty of model validation.

Besides,we found FORCCHN showed poor performance for the ever-
green broadleaf forest, and good performance for deciduous broadleaf
forest. This conclusion was supported by recent model evaluations,
such as Raczka et al. (2013) and Yuan et al. (2014a). In general, decidu-
ous broadleaf forest demonstrates distinct seasonal dynamics of leaf
phenology, and dominating factors of vegetation production can be
explicitly described bymodel. On the contrary, evergreen broadleaf for-
est reveals subtle changes in the seasonal leaf phenology, and various
environment factors jointly determine plant photosynthesis, which in-
crease the difficulty in modelling.

Although the usage of 37 EC sites in this study are correct in them-
selves, the global distribution still lacks a full representation of all forest
ecosystems for model validation. Particularly most sites are biased to
the Northern Hemisphere, with only 4 sites occurring in the Southern
Hemisphere and no sites being in African tropical forest (Fig. 1).
Hence, further work can be strengthened by includingmore systematic
and objective model evaluation using more EC observation sites.

4.2. Model performance under Mediterranean climate

The difficulties in predicting C fluxes of the Csa forest sites consid-
ered in this study (Fig. 6) can be due to the fact that uncertainties in
the representation of the water stress characterizing the Csa climate af-
fect the simulations of GPP and ER (Migliavacca et al., 2011; Szczypta
et al., 2014). On one hand, drought tolerance parameter in FORCCHN
(Supplement, Table S2) is not appropriate enough to represent water
stress during summer dry period, and variability in drought tolerance
differs substantially among individual species but our model does not
consider the discrepancy as we use PFTs for simulation (Section 2.2).
On the other hand, as reported by Balzarolo et al. (2014), several envi-
ronmental factors impact seasonal variability of C fluxes in water limit-
ed biomes. In this study, FORCCHN could not totally account for the
impacts of environmental factors on C fluxes during summer dry period
(Supplement, Fig. S6), which is most likely to generate the poor
performance.

In addition, management practices, such as heavy thinning and
water harvesting could also increase the modelling difficulties under
Mediterranean climate. For example, in Israel, the tree plantations are
often supported by building a ‘liman’ (Schiller and Karschon, 1974;
Bredemeier, 2011), during the rare but frequently strong precipitation
events, the artificial basin of the ‘liman’ fills up by surface flow, and
water is forced to infiltrate locally, which indirectly increases actual
water input and therefore alleviates the impact of water stress on tree
growth. Noted, however, that this process not reflected in our simula-
tion likely causes poor predictions, it is particularly so at IL-Yat site
where the peak photosynthetic activity has been observed in early
spring (Rotenberg and Yakir, 2010), while FORCCHN predicts the zero
GPP throughout the entire cycle of conifer plantation (Supplement,
Fig. S1).

4.3. Simulation uncertainty on global scale

The potential uncertainty in estimating C fluxes on global scale may
include the following:

I. Uncertainty from the model. Previous studies (Cramer et al.,
1999; Schaefer et al., 2012; Ogutu and Dash, 2013) have shown
that different C flux estimates among models are caused by
model structural differences (e.g. model assumptions, algorithm
simplifications, and parameterizations). For example, a recent
study, comparing seven light-use efficiency models against ob-
servations from 157 global EC towers, showed substantial dis-
agreement in the estimated GPP among different models (Yuan
et al., 2014a). Our findings derive from one carbon budget
model (i.e., FORCCHN) driven by one climate forcing dataset.
The transfer of our findings to other models might need further
examination, since the sensitivity of FORCCHN to the choice of
forcing dataset may not be the same as for other models;

II. Uncertainty from satellite-derived vegetation products. As re-
ported by Beer et al. (2010), the changes in land cover maps
caused large discrepancies in global GPP estimates. In the present
study, evergreen broadleaf forest exists in south-central Africa



Fig. 8. Simulated by FORCCHN interannual variation of (a) GPP, (b) ER and (c) NEP (g C m−2 yr−1) for different forest types during 1982–2011. The dash line represents the linear
regression of the carbon flux in the past 30 years.
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based on IGBP-DIS classification scheme (Fig. 1); however,
according to GLC2000 and MODIS land cover, the identical land
is broadly classified into deciduous broadleaf forest and savanna,
respectively. Obviously, the inconsistent forest areas would di-
rectly increase the estimation uncertainty of total C fluxes. Fur-
thermore, FORCCHN depends on satellite-derived vegetation
products such as LAI, which have been reported to increase er-
rors in C flux estimation (Ryu et al., 2011; Yuan et al., 2014b).
In our model, the satellite-derived LAI data is used to initialize
the tree numbers and individual tree's growth status in the
starting year of simulation, the discrepancies among different
LAI products might generate different initialized results, which
would potentially affect the estimation of total C flux in forest
ecosystems on plot scale.

III. Uncertainty from climate input. Uncertainties in C model esti-
mates are often considered to be largely induced by biases in
forcing climate data (Zhao et al., 2006; Barman et al., 2014). A
comparison between in-situ and gridded forcing variables con-
firmed that Princeton University data set present a great
Table 4
Simulated by FORCCHN mean annual (1982– 2011) carbon fluxes for different forest types on

ENF EBF DNF

Mean (g C m−2 yr−1)
GPP 818 ± 141 2657 ± 233 645 ± 65
ER 712 ± 98 2578 ± 222 643 ± 80
NEP 106 ± 53 79 ± 34 2 ± 23

Total (Pg C yr−1)
GPP 4.29 ± 0.73 39.98 ± 3.52 1.33 ± 0.13
ER 3.75 ± 0.52 38.81 ± 3.32 1.32 ± 0.17
NEP 0.54 ± 0.26 1.12 ± 0.52 0.01 ± 0.05

a Uncertainty estimates refer to one standard deviation and are derived from the spread of 1
agreement with the EC tower-based observations because of
the relatively dense measurement network, however, the errors
are likely to be larger in some other parts of the world where
measurement networks are less developed (Yebra et al., 2015).
Therefore, to reduce the uncertainty, further efforts should be fo-
cused on the estimation of global C fluxes using an ensemble of
climate input (e.g. MERRY, ERA-Interim, and NCEP/NCAR).

4.4. Other limitations

Land Use and Land Cover Change (LULCC) is a required factor to
quantify the global C cycle, the net flux of carbon from LULCC is
1.10 ± 0.11 Pg C yr−1 from 2000 to 2009 (Houghton et al., 2012), ac-
counting for 12.5% of anthropogenic carbon emissions (Friedlingstein
et al., 2010). LULCC not included in the study is most likely cause of
the C estimation's uncertainty on the global scale. In addition, pests
and diseases are additional weaknesses of themodel because these fac-
tors might counteract the effects of the anticipated mean warming and
global scale.a

DBF MIF Forest ecosystems

1442 ± 183 971 ± 85 1307 ± 140
1380 ± 188 941 ± 86 1251 ± 132
62 ± 23 30 ± 8 56 ± 13

2.87 ± 0.37 10.95 ± 0.97 59.41 ± 5.67
2.75 ± 0.38 10.59 ± 1.00 57.21 ± 5.32
0.12 ± 0.04 0.36 ± 0.10 2.20 ± 0.64

982– 2011. Forest ecosystems represent all five categories.
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lengthening of the growing season and reduce the productivity of the
ecosystems, reversing sinks to sources (Zhao et al., 2012). Moreover,
the processes of canopy interception, surface runoff and actual evapo-
transpiration, which could impact the simulated accuracy of the forest
biomass, should also be coupled to FORCCHN in future studies.
5. Conclusion

Based on an individual tree-based model FORCCHN, we initially ex-
amined the model performance using CO2 flux measurements from 37
EC sites, and then estimated the C fluxes of forest ecosystems on global
scale over the 1982– 2011 period. FORCCHN underestimated GPP and
slightly overestimated ER, and GPP is themajor reason for the underes-
timation of NEP in forest ecosystems across most EC sites. On average,
model showed good performance for deciduous broadleaf forest sites
and poor performance for evergreen broadleaf forest sites. All simula-
tions showed some limitations in capturingGPP, ER andNEP seasonality
for Mediterranean climate. Application of FORCCHN gave an annual
total GPP and ER of 59.41 ± 5.67 and 57.21 ± 5.32 Pg C yr−1 from
1982 to 2011, and global forest ecosystems have been shown to contrib-
ute a huge C storage for the same period, with total NEP being 2.20 ±
0.64 PgC yr−1, which is also comparable to the results reported by relat-
ed studies. Note, however, that the global distribution of EC sites in the
study still lacks a full representation of all forest ecosystems for model
validation, and following study should be strengthened by including
more model evaluation using more EC observation sites to further con-
vince in the rationality of using FORCCHN on the global scale.
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